Skip to main content
Engineering LibreTexts

15.3: Exercises

  • Page ID
    24328
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise 15.1 Non-causal Systems

    In this chapter, we only focused on causal operators, although the results derived were more general. As an example, consider a particular CT LTI system with a bi-lateral Laplace transform:

    \[G(s)=\frac{s+2}{(s-2)(s+1)}\nonumber\]

    (a) Check the p-stability and causality of the system in the following cases:

    (i) the ROC (Region of Convergence) is \(R_{1}=\{s \in \mathbb{C} \mid \operatorname{Re}(s)<-1\}\) where \(Re(s)\) denotes the real part of s;

    (ii) the ROC is \(R_{2}=\{s \in \mathbb{C} \mid-1<\operatorname{Re}(s)<2\}\)

    (iii) the ROC is \(R_{3}=\{s \in \mathbb{C} \mid \operatorname{Re}(s)>2\}\)

    (b) In the cases where the system is not p-stable for \(p = 2\) and \(p = \infty\), find a bounded input that makes the output unbounded, i.e., find an input \(u \in L_{p}\) that produces an output \(y \notin L_{p}\), for \(p=2, \infty\).

    Exercise 15.2

    In nonlinear systems, \(p\)-stability may be satisfied in only a local region around zero. In that case, a system will be locally \(p\)-stable if:

    \[\|G u\|_{p} \leq C\|u\|_{p}, \quad \text { for all } u \text { with }\|u\|_{p} \leq \delta\nonumber\]

    Consider the system:

    \[\begin{array}{l}
    \dot{x}=A x+B u \\
    z=C x+D u \\
    y=g(y)
    \end{array}\nonumber\]

    Where \(g\) is a continuous function on \([-T, T ]\). Which of the following systems is \(p\)-stable, locally \(p\)-stable or unstable for \(p \geq 1\):

    (a) \(g(x)=\cos x\)

    (b) \(g(x)=\sin x\)

    (c) \(g(x)=\operatorname{Sat}(x)\) where

    \[\operatorname{Sat}(x)=\left\{\begin{array}{ll}
    x & |x| \leq 1 \\
    1 & |x| \geq 1
    \end{array}\right.\nonumber\]


    This page titled 15.3: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mohammed Dahleh, Munther A. Dahleh, and George Verghese (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.