Skip to main content
Engineering LibreTexts

9.7: Another way of expressing the energies

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    What we have been doing so far is to calculate how U varies with c, and then find the equilibrium value of c by differentiating U with respect to c. Looking at the terms they fall into two types:

    Those that come from the loading system, UE and UF: let’s add these together and call the sum UM

    • These give the driving force for cracking

    Those that are associated with the material, US

    • This gives the resistance to cracking

    Equilibrium will occur when

    \[\frac{\mathrm{d} U(c)}{\mathrm{d} c}=0\]

    Breaking our energies into the two different types, gives

    \[-\frac{\mathrm{d} U_{\mathrm{M}}}{\mathrm{d} c}=\frac{\mathrm{d} U_{\mathrm{s}}}{\mathrm{d} c}\]

    From our expression for cracking in tension

    \[\frac{\mathrm{d} U_{\mathrm{s}}}{\mathrm{d} c}=2 R\]


    \[\frac{\mathrm{d} U_{\mathrm{M}}}{\mathrm{d} c}=-\frac{2 \pi \sigma^{2}}{E} c=2 G\]

    where G is the energy per unit area of crack and so is often called the strain energy release rate, or the crack driving force. Now the turning point occurs when

    \[G = R\]

    This is our condition for cracking, that the crack driving force, G, equals the fracture resistance of the material, R.

    This page titled 9.7: Another way of expressing the energies is shared under a CC BY-NC-SA 2.0 license and was authored, remixed, and/or curated by Dissemination of IT for the Promotion of Materials Science (DoITPoMS) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?