2.1: Features and Fundamental Equations
- Page ID
- 121534
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)- Classification
- Deterministic: written functional form of independent variable \(t\) \[ x(t) = \alpha t^{n}\mathbf{e}^{-t/\beta}\]
- Adjective Periodic: repeats at some fundamental frequency
- Simple: implies only a single frequency
- Complex: multiple frequencies are possible including through summation: \[ y(t) = D_{0} + \sum_{i}C_{i}\cos(2\pi f_{i} t+\phi_{i}) \]
- Combining periodics
- Parameters of general simple period equation \[ y(t) = D_{0}+C\sin(\omega t + \phi) \]
- \(D_{0}\) is the mean offset from zero
- \(C\) is the amplitude of oscillation
- \(\omega\) circular frequency [rad/s]
- \(f\) cyclic frequency [rev/time] (\(f = \frac{\omega}{2\pi})\)
- \(T\) period is the inverse of cyclic frequency [time] (\(T = 1/f\))
- \(\phi\) phase offset (left-right shift)
- Link to unscripted video with student interpretation and subsequent instruction ...
- Combining sines and cosines into one \[ A\cos(\omega t) + B\sin(\omega t) + D_{0}= C\sin(\omega t + \phi^{*}) +D_{0} = C\cos(\omega t -\phi) + D_{0} \]
- \(C\) is the norm of the amplitudes: \(C = \sqrt{A^2+B^2}\)
- Phase is a 4-quadrant inverse tangent \[\phi = \tan^{-1}\left(\frac{B}{A}\right)\] \[ \phi^{*} = \tan^{-1}\left(\frac{A}{B}\right) \] *sign of numerator and denominator are crucial to get values beyond \(\frac{-\pi}{2} \leq \phi \leq \frac{\pi}{2}\)
- \(D_{0}\) is the mean offset (up or down depending on positive or negative sign)
- Parameters of general simple period equation \[ y(t) = D_{0}+C\sin(\omega t + \phi) \]
- Statistical features
- Mean: average value over specific time or data range
- Continuous Form starting at \(t_{1}\) and finishing at \(t_{2}\) \[ \bar{x} = \frac{\int_{t_{1}}^{t_{2}}x(t)dt}{\int_{t_{1}}^{t_{2}}dt} \]
- Discrete is the standard version from list of \(x_{i}\) values \[ \bar{x} = \frac{1}{N}\sum_{i=1}^{N} x_{i} \]
- Be wary of the time range on dynamic signal (major part of some laboratory assignments)
- Root mean square (RMS): indicates variation of the mean
- Continuous Signal
- The square \(x(t)^{2}\)
- Of which a mean is calculated \(\frac{\int_{t_{1}}^{t_{2}}x(t)^{2}dt}{\int_{t_{1}}^{t_{2}}dt}\)
- Then rooted \(\sqrt{\frac{\int_{t_{1}}^{t_{2}}x(t)^{2}dt}{\int_{t_{1}}^{t_{2}}dt}}\)
- In the simplified form \[ x_{rms} = \sqrt{\frac{1}{t_{2}-t_{1}}\int_{t_{1}}^{t_{2}}x(t)^{2}dt} \]
- Similar in discrete form \[ x_{rms} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}} \]
- RMS is NOT the standard deviation when \(\bar{x}\neq 0\)
- Standard deviation is relative to the mean \(\bar{x}\) \[ x_{std} = \sqrt{\frac{1}{t_{2}-t_{1}}\int_{t_{1}}^{t_{2}}\left[x(t)-\bar{x}\right]^{2}dt} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(x_{i}-\bar{x})^{2}} \]
- Continuous Signal
- Mean: average value over specific time or data range
- Some Example Problems
-
Convert the following into a cosine only and a sine only functions with the appropriate phase: \[ x(t) = -5\sin(10\pi t) + 8\cos(10\pi t) \nonumber \]
Produce a plot of at least three periods using all three functions at different timesteps or markers to prove each are equivalent.
- Answer
-
The amplitude will be the norm of the two amplitudes \(C = \sqrt{(-5)^{2} + 8^{2}} = 9.43\).
The phase will depend on whether it is cosine or sine.
\(\phi = \tan^{-1}(\frac{-5}{8}) = -0.559\) and \(\phi^{*} = \tan^{-1}(\frac{8}{-5}) = 2.13\)
which results in \[ x(t) = 9.43 \cos (10\pi t + 0.559) = 9.43 \sin(10\pi t + 2.13) \nonumber \]
With cyclic frequency of 5~Hz, the time range for the plot would need to be\(0 \leq t \leq \frac{3}{5}\)
Using the function\(x(t)\)in the prior Problem, calculate the mean for analog (integrate) and discrete (summation) methods for the following time intervals where\(T\)is the period of the original function:
- \(0 < t < 3T\)~sec
- \(1.5T < t < 4T\)~sec
- \(0 < t < 1.1T\)~sec
Interpret how the mean value changes as a function of the portion of the period included in the integration/summation range.
- Answer
-
- \(0 < t < 3T\) sec: The period\(T = \frac{2\pi}{\omega} = \frac{2\pi}{10\pi} = 0.2\). The continuous integral will be \[ \bar{x} = \frac{1}{0.6-0} \int_{0}^{0.6}-5\sin(10\pi t) + 8\cos(10\pi t)dt \] \[\bar{x} = \frac{5}{0.6(10\pi)} \cos\left(10\pi t\right|_{0}^{0.6} + \frac{8}{0.6(10\pi)} \sin\left(10\pi t\right|_{0}^{0.6}\] \[ \bar{x} = \frac{5}{2\pi} (1-1) \] \[ \bar{x} = 0 \nonumber \] The discrete mean is straightforward, but will depend on whether you include the final timestep at\(t_{max}=0.2\). If using the functional values to the end and\(\delta t = 0.001\)~sec up yields a mean value\(\bar{x} = 0.0398\)whereas using only up to\(t_{max}=0.199\)~s makes\(\bar{x} = 9.23\times 10^{-16}\)(which is machine precision \ldots). The zero value is because the range was over a full period of the original signal.
- \(1.5T < t < 4T\) sec: In continuous form \[ \bar{x} = \frac{1}{0.8-0.3} \int_{0.3}^{0.8}-5\sin(10\pi t) + 8\cos(10\pi t)dt = 0.637 \nonumber \] and in discrete form\(\bar{x} = 0.621\). Note that the fewer periods means that the partial period will shift the mean slightly.
- \(0 < t < 1.1T\) sec: In continuous form \[ \bar{x} = \frac{1}{0.22-0} \int_{0}^{0.22}-5\sin(10\pi t) + 8\cos(10\pi t)dt = 0.542 \nonumber \] and in discrete form\(\bar{x} = 0.552\). The very narrow window and discrete result creates the numerical difference. If\(\Delta t\)were decreased it would more closely match the continuous form.
-

