6.2: Conversion of Function
- Page ID
- 121978
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)- Representing Complex Periodic Waveform
-
If \(y(t)\) is given, the how could one determine amplitudes \(C_{i}\) and phases \(\phi_{i}\) in the summation?
- Answer
-
Calculate the Fourier Coefficients
- Assume that \(y(t)\) is periodic
- \(y(t) = y(t+T)\): repeats at fundamental period \(T\)
- Period relates to cyclic and circular frequency: \(T_{1} = \frac{1}{f_{1}}= \frac{2\pi}{\omega_{1}}\)
- Rather than trying to calculate phase, separate amplitude coefficient into trigonometric series \[y(t) = \frac{A_{0}}{2} + \sum_{n=1}^{\infty}\left(A_{n}\cos\left(n\omega t\right) + B_{n}\sin\left(n\omega t\right)\right) \] \[y(t) = \frac{A_{0}}{2} + \sum_{n=1}^{\infty}\left(A_{n}\cos(n\frac{2\pi}{T} t) + B_{n}\sin(n\frac{2\pi}{T} t)\right) \] where subscripts of coefficients \(A_{i}\) and \(B_{i}\) correspond to integer values of \(n=\{1,2,3,\ldots\}\). [In other words, there is no such thing as \( A_{1.42}\)]
- Integrating the original periodic signal over its fundamental period provides the mean value \[ A_{0} = \frac{2}{T}\int_{-T/2}^{T/2} y(t) dt \] or \[ A_{0} = \frac{2}{T}\int_{0}^{T} y(t) dt \] where the user gets to define which period range is easier to integrate
- If the original function \(y(t)\) is multiplied by orthogonal periodic form and integrated over the fundamental period: \[\int_{0}^{T} y(t) \cos(m \omega t)dt = A_{0} \int_{0}^{T} \cos(m \omega t)dt + \sum_{n}A_{n}\int_{0}^{T} \cos(n\omega t)\cos(m \omega t)dt +B_{n}\int_{0}^{T} \sin(n\omega t)\cos(m \omega t)dt \]
- First integral is multiplying the mean value \(A_{0}\) by integration of full period; hence result becomes zero
- Last term is multiple of \(\sin\) and \(\cos\) which are out of phase with one another AND a full period; also goes to zero value
- Middle term becomes zero value when frequencies don't match: \(m\neq n\)
- Remaining result becomes \(\cos^{2}\) when \(m=n\) which eventually integrates to simple value of \(\frac{T}{2}\)
- Allows for direct calculation of discrete coefficients \[ A_{n} = \frac{2}{T}\int_{0}^{T} y(t)\cos(n \omega t) dt \] \[A_{n} = \frac{2}{T}\int_{-T/2}^{T/2} y(t)\cos(n\frac{2\pi}{T} t) dt \] where user selects range of period or argument form that is easiest to integrate
- Similar form applies to the \(\sin\) function to get \(B_{n}\) \[ B_{n} = \frac{2}{T}\int_{0}^{T} y(t)\sin(n\frac{2\pi}{T} t) dt \] \[ B_{n} = \frac{2}{T}\int_{-T/2}^{T/2} y(t)\sin(n\omega t) dt \]
- usually will be given \(y(t)\) or build from graph (including piecewise function) to then get values of \(A_{n}\) and \(B_{n}\) that includes \(n\) as TBD integer value
- Important frequency terms
- fundamental harmonic is the \(n=1\); represents the maximum full period \(T\) of the original signal
- increasing \(n\) are subsequent harmonics that increase frequency by integer multiples and decrease amplitude
-
- Special Cases of Fourier Series
- Even functions (will be cosine only)
- definition of even function is \(g(t)=g(-t)\)
- same as when considering \(\cos(-n\omega t) = \cos(n \omega t)\)
- like bouncing away from mean value in same direction from \(t=0\)
- all \(B_{n} = 0\)
- thus, simplified form \[ y(t) = A_{0} + \sum_{n=1}^{\infty} A_{n}\cos(n\omega t) \]
- Odd functions (will be sine only)
- definition of odd function is \(-h(t)=h(-t)\)
- same as when considering \(\sin(-n\omega t) = -\sin(n \omega t)\)
- function moves in opposite directions from \(t=0\)
- all \(A_{n} = 0\)
- thus, simplified form \[ y(t) = A_{0} + \sum_{n=1}^{\infty} B_{n}\sin(n\omega t) \]
- If neither even or odd, then Fourier Series can contain both \(A_{n}\) and \(B_{n}\)
- Yet still a way to solve more simply \(\ldots\) through phase shift
- To make sine or cosine only \[y(t) = A_{0} + \sum_{n=1}^{\infty} C_{n}\cos(n\omega t- \phi_{n}) \] \[y(t) = A_{0} + \sum_{n=1}^{\infty} C_{n}\sin(n\omega t+ \phi_{n}^{*}) \]
- Same trig identity rules apply \[C_{n} = \sqrt{A_{n}^{2}+B_{n}^{2}} \] \[
\phi_{n} = \tan^{-1}(\frac{B_{n}}{A_{n}}) \] \[ \phi_{n}^{*} = \tan^{-1}(\frac{A_{n}}{B_{n}}) \] - but impossible to know \(\phi_{n}\) in advance
- UNLESS use the phase shift in time \[ C_{n} = \frac{2}{T}\int_{0}^{T} y(t\pm t_{0})\cos\left(n \omega \left[t\pm t_{0}\right]\right) dt \] \[\phi_{n}= \pm n\omega t_{0} \]
- Even functions (will be cosine only)
Consider a 33% duty cycle signal with phase offset shown below. Determine the Fourier Coefficients and then show a plot with the signal produced up to the \(4^{\mathrm{th}}\) and \(10^{\mathrm{th}}\) harmonic.

- Answer
-
The piecewise function will have the following form: \[
y(t) = \left\{\begin{array}{lr} -1 & -0.01\leq t < 0.03 \\ 4 & 0.03\leq t <0.05 \end{array} \right. \]
The mean value \(A_{0}\) is the average over the period \(T=0.06\] sec which would be \[A_{0} = \frac{2}{0.06}\left(\int_{-0.01}^{0.03} -1 dt + \int_{0.03}^{0.05} 4 dt\right) \] \[A_{0} = \frac{2}{0.06} (-1(0.03+0.01)+4(0.05-0.03)) = 1.33 \]The coefficients for the sine and cosine terms will be \[ A_{n} = \frac{2}{0.06}\left(\int_{-0.01}^{0.03}-1 \cos\left(\frac{2\pi n t}{0.06}\right)dt +\int_{0.03}^{0.05}4 \cos\left(\frac{2\pi n t}{0.06}\right)dt\right) \]\[A_{n} = \frac{1}{\pi n}\left(-\sin\left(\frac{2\pi n t}{0.06}\right|_{-0.01}^{0.03}+ 4\sin\left(\frac{2\pi n t}{0.06}\right|_{0.03}^{0.05}\right)\] \[A_{n} = \frac{1}{\pi n}\left(-5\sin\left(\pi n\right)+\sin\left(-\pi n/3\right)+4\sin\left(\frac{10\pi n}{6}\right)\right) \]
\[B_{n} = \frac{2}{0.06}\left(\int_{-0.01}^{0.03}-1 \sin\left(\frac{2\pi n t}{0.06}\right)dt +\int_{0.03}^{0.05}4 \sin\left(\frac{2\pi n t}{0.06}\right)dt\right) \] \[B_{n} = \frac{1}{\pi n}\left(\cos\left(\frac{2\pi n t}{0.06}\right|_{-0.01}^{0.03}- 4\cos\left(\frac{2\pi n t}{0.06}\right|_{0.03}^{0.05}\right)\] \[B_{n} = \frac{1}{\pi n}\left(5\cos\left(\pi n\right)-\cos\left(-\pi n/3\right)-4\cos\left(\frac{10\pi n}{6}\right)\right) \]
The Matlab code for recreating the Fourier series is included in the in-class examples.
Possibly include? Consider the other option of phase shifting the signal:
\begin{eqnarray}
y(t-0.03) = \left\{\begin{array}{lr} -1 & -0.04\leq (t-0.03) < 0.0 \\ 4 & 0.0\leq (t-0.03) <0.02 \end{array} \right. \nonumber
\end{eqnarray}
The integration then becomes a little easier:
\begin{eqnarray}
C_{n} =& \frac{2}{0.06}\left(\int_{-0.04}^{0.0}-1 \cos\left(\frac{2\pi n t}{0.06}\right)dt +\int_{0.0}^{0.02}4 \cos\left(\frac{2\pi n t}{0.06}\right)dt\right) \nonumber \\
C_{n} =& \frac{1}{\pi n}\left(-\sin\left(\frac{2\pi n t}{0.06}\right|_{-0.04}^{0.0}+ 4\sin\left(\frac{2\pi n t}{0.06}\right|_{0.0}^{0.02}\right)\nonumber \\
C_{n} =& \frac{1}{\pi n}\left[0+\sin\left(2\pi n\left(-\frac{2}{3}\right)\right)+4\sin\left(2\pi n \left(\frac{1}{3}\right)\right)-0\right] \nonumber
\end{eqnarray}
where the unique phase will be \(\phi_{n} = \frac{2\pi n}{0.06}(-0.03)\) which would recreate the correct \(A_{n}\) and \(B_{n}\) coefficientsTo reproduce Fourier Series displaying the updated signal as harmonic \(n\) increases:
clear all; close all;% Defining signal over period with displayt = [0,3,3,5,5,6]/100;T = max(t)-min(t);V = [-1,-1,4,4,-1,-1];plot(t,V,'r-','LineWidth',2.5)hold on;set(gca,'FontSize',14,'XTick',[-8:2:8]/100,'TickLength',[0.035,0.025],'XMinorTick','on','YMinorTick','on','GridLineStyle','--');xlabel('t (sec)');ylabel('y(t) (cm)');axis([-T*1-.5/100,1.5*T+.5/100,-1.5,4.5])grid onfor i = [-2,-1,1,2]plot(t+i*T,V,'r-','LineWidth',2.5);endpause;% Create time domain array of the estimating signalts = [-8:.01:10]/100;yt = 2/3*ones(size(ts));h = plot(ts,yt,'k','Linewidth',2.0);% Repeat calculation of coefficients at higher harmonicsfor i = 1:1:30BB = 1/(pi*i)*(5*cos(pi*i)-cos(-pi*i/3)-4*cos(10*pi*i/6))AA = 1/(pi*i)*(-5*sin(pi*i)+sin(-pi*i/3)+4*sin(10*pi*i/6))% sum with prior signalyt = yt + AA*cos(2*pi*i*ts/T)+BB*sin(2*pi*i*ts/T);% display updating resultset(h,'Ydata',yt);title(['Harmonic n = ',num2str(i)])drawnow;if(i==4 | i==10)pauseelsepause(0.1)endend

