Skip to main content
Engineering LibreTexts

13.2: Matrix Multiplication Applications

  • Page ID
    88004
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    By Carey Smith

    Rotation Matrices

    One use of matrices is to rotate vectors.

    A 2D Rotation matrix is of this form:

    Mrot2D = [ cosd() -sind() ]

    [ sind() cosd() ]

    (Use cosd() and sind() when the angle is in degrees.)

    Use cos() and sin() when the angle is in radians.)

    Example \(\PageIndex{3}\) 2D Rotate by 60 degrees clockwise:

    Mrot2D60 = [ cosd(60) -sind(60) ] = [ 0.5 -0.866 ]

    [ sind(60) cosd(60) ] [ 0.866 0.5 ]

    Example code is in the attached file Ex_Rotation2D.m

    Solution

    Add example text here.

    3D Rotation matrices

    A 3D Rotation matrix about the z-axis is has a 2D rotation sub matrix in it. It is of this form::

    Mrot3Dz = [ cosd(z) -sind(z) 0 ]

    [ sind(z) cosd(z) 0 ]

    [ 0 0 1 ]

    3D Rotation matrix about the X-axis is:

    Mrot3Dx = [ 1 0 0 ]

    [ 0 cosd(x) -sind(x) ]

    [ 0 sind(x) cosd(x) ]

    3D Rotation matrix about the Y-axis is:

    Mrot3Dy = [ cosd(y) 0 sind(y) ]

    [ 0 1 0 ]

    [ -sind(y) 0 cosd(y) ]

    Example code is in the attached file Ex_Rotation3D.m

    This produced the following figures:

    Initial3D_vector.png

    Rotate3Dy.png

    Rotate3Dz.png

    Rotate3Dx.png

    Initial vector is on the Z-axis

    Rotate by+90 about Y it goes to the X-axis

    Rotate by+90 about Z it goes to the Y-axis

    Rotate by+90 about X it goes to the Z-axis

    Matrix Powers

    A matrix can be raised to a power using matrix multiplication.

    Example \(\PageIndex{4}\)

    A = [1 2
    3 4]

    A^2 = A*A = [1 2]*[1 2] = [ 7 10]

    [3 4] [3 4] [15 22]

    A^4 = [199 290]
    [435 634]

    Solution

    Add example text here.

    Life Cycle Matrix

    A Matrix can be used to model the number of plants or animals at various stages from year to year.

    Example \(\PageIndex{5}\) Draba Plant Matrix Life Cycle

    This example considers a small flowering plant called Lake Tahoe Draba. Information about this plant and an image is available at: https://calscape.org/Draba-asterophora-(). That image is copyrighted. The image below is a creative commons image of a similar draba species. The numbers used in this example are made up simply to illustrate a possible application of matrix multiplication.

    Draba_jorullensis.jpg

    https://commons.wikimedia.org/wiki/F...orullensis.jpg, Tim Park

    This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

    Consider these stages of a plant:

    • Seed
    • Seedling (1st year)
    • Mature plant

    The numbers of plants in each stage will be the elements of a vector, D, for Draba.

    Initialize D to have 20 mature plants, with zeros for the other stages:

    D1 = [0

          0

          20]

    Let T = the transition matrix from 1 year to the next.

    Assume the following average numbers: (These are made up)1 plant produces 8 seeds.

    Fraction of seeds that become seedlings = 0.2

    Fraction of seedlings that become mature plants = 0.5

    Fraction of plants that survive from year to year = 0.7

    Create the transition matrix's rows:

    seeds = 8*number of mature plants:

    -> T_seeds = [0 0 8]

    seedlings = 0.2*number of mature seeds

    -> T_seedlings = [0.2 0 0]

    New mature plants from seedling = 0.5*seedlings

    0.7*mature plants survive from the previous year

    T_mature = [0 0.5 0.7]

    The T matrix is created by combining these 3 vectors:

    T = [T_seeds

    T_seedlings

    T_mature ]

    T= [0   0   8

        0.2 0   0

        0   0.5 0.7 ]

    Compute the numbers of each stage in year 2:

    D2 = T*D1

    Compute the numbers of each stage in year 3:

    D3 = T*D2

    Compute the numbers of each stage in year 4:

    D4 = T*D3

    Compare D4 another way using a matrix power:

    D4b = (T^3)*D1

    Verify that this produces the same result.

    Compute the numbers of each stage in year 10:

    D10 = (T^9)*D1

    Solution

    Add example text here.

    .


    This page titled 13.2: Matrix Multiplication Applications is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Carey Smith.