Skip to main content
Engineering LibreTexts

13.6: Over-Determined Systems of Equations

  • Page ID
    85172
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Consistent Equations

    Simple examples of consistent over-determined system of equations:

    • One equation is a multiple of another equation
    • One equation is the of 2 other equations

    The rank of a consistent set of equations is equal to the number of unknowns.

    Example \(\PageIndex{1}\) "Overdetermined" consistent system: 3 equations, 2 unknowns

    x = -1 : 0.2 : 4;
    y1 = 5 - 1*x;
    y2 = -1 + 2*x;
    y3 = 2 + 0.5*x;

    The 3 lines intersect in 1 point, so these equations are consistent.

    Graphical intersection at (2, 3)

    Intersection_of_3_Lines.png
    %% Matrix reformulation:

    % Put the variables on the left and the constants on the right.
    % 1*x + y = 5
    % -2*x + y = -1
    % -0.5*x + y = 2

    % A*xy = B
    A = [ 1  1
         -2  1
        -0.5 1]
    B = [ 5
         -1
          2]
    rank(A) % 2
    xy = A\B % Matrix algebra solution = (2, 3)

    Solution

    Add example text here.

    .

    Exercise \(\PageIndex{1}\) Over-Determined Consistent System of Equations 1

    Over-Determined consistent system of equations of 4 equations in 3 unknowns.

    A3 = [3  2  5
          4  5 -2
          1  1  1
          2 -4 -7]
    % X3 = [x y z]'
    B3 = [22
           8
           6
         -27]

    Use Left matrix-division to solve this system of equations for X3
    Check your solution by computing this:
    X3ck = A3*X3

    The result should be close to B3.

    Answer

    Add texts here. Do not delete this text first.

    .

    Inconsistent Equations

    Example \(\PageIndex{2}\) "Overdetermined" inconsistent system: 3 equations, 2 unknowns

    x = -1 : 0.2 : 4;
    y1 = 5 - 1*x;
    y2 = -1 + 2*x;
    y3 = 1.6 + 0.5*x;

    % The 3rd equation has been modified, so the 3 lines do not intersect in a single point.

    Measurement Errors were added to the right-hand-side values of the consistent version of this exercise. Extra measure ments are often taken to help average-out measurement errors.

    These these equations are inconsistent. Rather, there are 3 intersection points of each pair of lines.
    Inconsistent_3_Lines.png

    %% We can still use left-division (Gaussian elimination)
    % to find a good approximate solution.
    % Matrix formulation
    % 1*x + y = 5
    % -2*x + y = -1
    % -0.5*x + y = 1.6]
    % xy = [x
    % y]
    % A*xy = B]
    A = [ 1 1
    -2 1
    -0.5 1]
    B = [ 5
    -1
    1.6]
    rank(A) % 2

    xy = A\B % Solution = (2, 2.87)

    Solution

    Add example text here.

    .

    Exercise \(\PageIndex{2}\) Over-Determined Inconsistent System of Equations 2

    Over-Determined inconsistent system of equations of 4 equations in 3 unknowns.

    Measurement Errors were added to the right-hand-side values of the consistent version of this exercise. Extra measure ments are often taken to help average-out measurement errors.

    A4 = [3  2  5
          4  5 -2
          1  1  1
          2 -4 -7]

    % X4 = [x y z]'
    B4 = [22+1
           8-0.5
           6+1
         -27-1]

    Use Left matrix-division to solve this system of equations for X4
    Check your solution by computing this:
    X4ck = A4*X4

    The result should be somewhat close to B4, but will not match because these equations are inconsistent.

    Answer

    Add texts here. Do not delete this text first.

    .


    This page titled 13.6: Over-Determined Systems of Equations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Carey Smith.