# 18.1.2: 18.1.2 The integral() function

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

The integral() function is preferred over the traz() function.

The function integral() determines a good set of x-values and uses a more sophisticated algorithm than trapz()
You need to specify a "handle" to a Matlab function, like is done for the fzero() function. The function and its handle can be specified in 2 methods:

Method A: Use a function .m file, such as this:
function y = y_cubic(x)   y = x.^3 -4*x + 4 end

In the main script, the integral function refers to this file like this:
x1 = -2.0; x2 = 1.5;
intg1 = integral(@y_cubic, x1, x2)
% =14.7656, which = the analytic answer

Method B: Use an "in-line" function, like this:
y_handle = @(x) x.^3 -4*x + 4
% This is also known as an "anonymous function"
intg1 = integral(y_handle, x1, x2)

% 14.7656, which = the analytic answer

You may use either a function .m file or an anonymous function definition within their script.

My opinion is that a function .m file is the clearer method.

This page titled 18.1.2: 18.1.2 The integral() function is shared under a not declared license and was authored, remixed, and/or curated by Carey Smith.