Skip to main content
Engineering LibreTexts

1.3: The Basics of Chemistry

  • Page ID
    92690
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The chapters in this unit are absolutely essential for anyone embarking on the serious study of Chemistry. The material covered here will be needed in virtually every topic you will encounter in the remainder of your first-year course, as well as in subsequent Chemistry courses — so you might as well master it now!

    • 1.3.1: Atoms, Elements, and the Nucleus
      The parallel concepts of the element and the atom constitute the very foundations of chemical science. The concept of the element is a macroscopic one that relates to the world that we can observe with our senses. The atom is the microscopic realization of this concept; that is, it is the actual physical particle that is unique to each chemical element. Their very small size has long prevented atoms from being observable by direct means, so their existence was not universally accepted until the
    • 1.3.2: Avogadro's Number and the Mole
      The chemical changes we observe always involve discrete numbers of atoms that rearrange themselves into new configurations. These numbers are far too large in magnitude for us to count , but they are still numbers, and we need to have a way to deal with them. We also need a bridge between these numbers, which we are unable to measure directly, and the weights of substances, which we do measure and observe. The mole concept provides this bridge, and is key to all of quantitative chemistry.

    Thumbnail: Spinning Buckminsterfullerene (\(\ce{C60}\)). (CC BY-SA 3.0; unported; Sponk).


    This page titled 1.3: The Basics of Chemistry is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Stephen Lower via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.