Skip to main content
Engineering LibreTexts

1.6: Chemical Bonding and Molecular Structure

  • Page ID
    92721
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Why do some atoms join together to form molecules, but others do not? Why is the CO2 molecule linear whereas H2O is bent? How can we tell? How does hemoglobin carry oxygen through our bloodstream? There is no topic more fundamental to Chemistry than the nature of the chemical bond, and the introduction you find here will provide you with an overview of the fundamentals and a basis for further study.

    • 1.6.1: Three Views of Chemical Bonding
      These short tutorials summarize the various ways of looking at bond formation without going into too much detail.
    • 1.6.2: Molecules - Properties of Bonded Atoms
      The concept of chemical bonding lies at the very core of Chemistry; it is what enables about one hundred elements to form the more than fifty million known chemical substances that make up our physical world. Exactly what is a chemical bond? And what observable properties can we use to distinguish one kind of bond from another? This is the first of ten lessons that will help familiarize you with the fundamental concepts of this very broad subject.
    • 1.6.3: Models of Chemical Bonding
      Why do atoms bind together— sometimes? The answer to this question would ideally be a simple, easily understood theory that would not only explain why atoms bind together to form molecules, but would also predict the three-dimensional structures of the resulting compounds as well as the energies and other properties of the bonds themselves. Unfortunately, no one theory exists that accomplishes these goals in a satisfactory way for all of the many categories of compounds that are known.
    • 1.6.4: Polar Covalence
      The electrons constituting a chemical bond are simultaneously attracted by the electrostatic fields of the nuclei of the two bonded atoms. In a homonuclear molecule such as O2 the bonding electrons will be shared equally by the two atoms. In general, however, differences in the sizes and nuclear charges of the atoms will cause one of them to exert a greater attraction on the bonding pair, causing the electron cloud to be displaced toward the more strongly-attracting atom.
    • 1.6.5: Molecular Geometry
      The Lewis electron-dot structures you have learned to draw have no geometrical significance other than depicting the order in which the various atoms are connected to one another. Nevertheless, a slight extension of the simple shared-electron pair concept is capable of rationalizing and predicting the geometry of the bonds around a given atom in a wide variety of situations.


    This page titled 1.6: Chemical Bonding and Molecular Structure is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Stephen Lower via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.