Skip to main content
Engineering LibreTexts

7.3.2: Energy Equation in Frictionless Flow and Steady State

  • Page ID
    728
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In cases where the flow can be estimated without friction or where a quick solution is needed the friction and other losses are illuminated from the calculations. This imaginary fluid reduces the amount of work in the calculations and Ideal Flow Chapter is dedicated in this book. The second low is the core of "no losses'' and can be employed when calculations of this sort information is needed. Equation (??) which can be written as

    \[ \label{ene:eq:2law}
    dq_{rev} = T\,ds = dE_u + P\, dv
    \]

    Using the multiplication rule change equation (76)

    \[ \label{ene:eq:2lawMulti}
    dq_{rev} = dE_u + d\left(P\,v\right) - v\,dP = dE_u + d \left(\dfrac{P}{\rho}\right) - v\,dP
    \] integrating equation (77) yields

    \[ \label{ene:eq:2lawMultiInt}
    \int dq_{rev} = \int dE_u + \int d \left(\dfrac{P}{\rho\dfrac{}{}}\right) - \int v\,dP
    \]

    \[ \label{ene:eq:2lawMultiIntA}
    q_{rev} = E_u + \left(\dfrac{P}{\rho\dfrac{}{}}\right) - \int \dfrac{dP}{\rho}
    \] Integration over the entire system results in

    \[ \label{ene:eq:2lawSys}
    Q_{rev} = \int_V \overbrace{\left( E_u + \left(\dfrac{P}{\rho\dfrac{}{}}\right) \right)}^{h} \,\rho\,dV -
    \int_V \left( \int \dfrac{dP}{\rho\dfrac{}{}} \right) \,\rho\, dV
    \] Taking time derivative of the equation (80) becomes

    \[ \label{ene:eq:2lawSysRate}
    \dot{Q}_{rev} = \dfrac{D}{Dt} \int_V \overbrace{\left( E_u + \left(\dfrac{P}{\rho\dfrac{}{}}\right) \right)}^{h} \,\rho\,dV -
    \dfrac{D}{Dt} \int_V \left( \int \dfrac{dP}{\rho\dfrac{}{}} \right) \,\rho\, dV
    \] Using the Reynolds Transport Theorem to transport equation to control volume results in

    \[ \label{ene:eq:2lawCVRate}
    \dot{Q}_{rev} = \dfrac{d}{dt} \int_V {h} \,\rho\,dV
    + \int_A h\,U_{rn} \,\rho\,dA +
    \dfrac{D}{Dt} \int_V \left( \int \dfrac{dP}{\rho\dfrac{}{}} \right) \,\rho\, dV
    \] As before equation (81) can be simplified for uniform flow as

    \[ \label{ene:eq:2lawU}
    \dot{Q}_{rev} = \dot{m} \left[ \left( h_{out} - h_{in} \right) -
    \left( \left. \int \dfrac{dP}{\rho\dfrac{}{}} \right|_{out} - \left. \int \dfrac{dP}{\rho} \right|_{in} \right)
    \right]
    \]
    or

    \[ \label{ene:eq:2lawh}
    \dot{q}_{rev} = \left( h_{out} - h_{in} \right) -
    \left( \left. \int \dfrac{dP}{\rho\dfrac{}{}} \right|_{out} - \left. \int \dfrac{dP}{\rho} \right|_{in} \right)
    \]
    Subtracting equation (84) from equation (75) results in

    \[ \label{ene:eq:frictionlessEne}
    0 = w_{shaft} +
    \overbrace{\left( \left. \int \dfrac{dP}{\rho\dfrac{}{}} \right|_2 - \left. \int
    \dfrac{dP}{\rho\dfrac{}{}} \right|_1 \right) }
    ^{\text{change in pressure energy}} \\
    + \overbrace{\dfrac

    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Civil_Engineering/Book:_Fluid_Mechanics_(Bar-Meir)/07:_Energy_Conservation/7.3_Approximation_of_Energy_Equation/7.3.2:_Energy_Equation_in_Frictionless_Flow_and_Steady_State), /content/body/p[11]/span, line 1, column 4
    
    ^{\text{change in kinetic energy}}
    + \overbrace{g\,(z_2 - z_1)}^{\text{change in potential energy}}
    \]
    Equation (85) for constant density is

    \[ \label{ene:eq:frictionlessEneRho}
    0 = w_{shaft} +
    {\dfrac{P_2 - P_1}{\rho} } + {\dfrac

    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Civil_Engineering/Book:_Fluid_Mechanics_(Bar-Meir)/07:_Energy_Conservation/7.3_Approximation_of_Energy_Equation/7.3.2:_Energy_Equation_in_Frictionless_Flow_and_Steady_State), /content/body/p[12]/span, line 1, column 4
    
    + {g\,(z_2 - z_1)}
    \] For no shaft work equation (86) reduced to

    \[ \label{ene:eq:frictionlessEneRhoShaft}
    0 = {\dfrac{P_2 - P_1}{\rho} } + {\dfrac

    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Civil_Engineering/Book:_Fluid_Mechanics_(Bar-Meir)/07:_Energy_Conservation/7.3_Approximation_of_Energy_Equation/7.3.2:_Energy_Equation_in_Frictionless_Flow_and_Steady_State), /content/body/p[13]/span, line 1, column 4
    
    + {g\,(z_2 - z_1)}
    \]

    Contributors and Attributions

    • Dr. Genick Bar-Meir. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or later or Potto license.


    This page titled 7.3.2: Energy Equation in Frictionless Flow and Steady State is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.


    This page titled 7.3.2: Energy Equation in Frictionless Flow and Steady State is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Genick Bar-Meir via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.