Skip to main content
Engineering LibreTexts

18.8: Dynamic bending of a bar with two axes of symmetry

  • Page ID
    95339

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    18.8 Dynamic bending of a bar with two axes of symmetry

    If the cross section is symmetric with respect to both the x- and y-axes through the centroid, then xsc = ysc = 0math-4236.png, Ixy = 0, rxy = 0, and sxy = 0math-4237.png. In this case of double symmetry, transverse bending is decoupled from torsion in both the inertia and stiffness terms. That is, the inertia axis and elastic axis coincide. However, the motions of the lateral displacement v(z, t) and the rotation ϕx(z, t) are linked because of the presence of transverse shear deformation ψy. The governing weak forms (18.117) and (18.119) are

    0L m(v̈)δv + s yy v + ϕ x δvdz =0Lf y(z,t)δv(z)dz + Q2(t)δv(0,t) + Q8(t)δv(L,t).0L m r x2ϕ̈ x δϕx + EIxxϕxδϕ x + s yy v + ϕ x δϕx dz =0Lm x(z,t)δϕx(z,t)dz + Q4(t)δϕx(0,t) + Q10(t)δϕx(L,t) math-4238.png

    The previous two equations are combined to the matrix form

    0L δϕ xδv mrx2 0 0 m ϕ̈x v ̈ + δϕxEI xxϕx + δv + δϕ x syy v + ϕ x dz = δWn.c, (18.137) math-4239.png

    where the virtual work of the non-conservative forces is

    δWn.c. =0L δϕ xδv mz(z,t) fy(z,t) dz + δϕx(0,t)δv(0,t) Q2(t) Q4(t) + δϕx(L,t)δv(L,t) Q8(t) Q10(t) . (18.138) math-4240.png

    18.8.1 Finite element

    The development of the generalized displacements in Ωk follows the discussion in article 17.3.1 on page 462. The lateral displacement of the kth element is denoted by v(k)(ζ, t) and the rotation by ϕx(k)(ζ,t)math-4241.png. Define the generalized external displacements in terms of the rotation and displacement at the nodes by

    v(k)(1,t) = u 2k1(t)ϕx(k)(1,t) = u 2k(t)v(k)(1,t) = u 2k+1(t)ϕx(k)(1,t) = u 2k+2(t). (18.139) math-4242.png

    See figure 18.16. The 7X1 displacement vector of element Ωk is denoted by,

    The global z axis is aligned with the beam of length h sub k, with the vertical y axis and v displacements positive up, normal to the beam length. Rotation phi sub x is measured positive clockwise. The left edge is the node at z sub k, with vertical displacement u sub 2 k minus 1, shear force cap Q sub 4, rotation u sub 2 k, and applied moment cap Q sub 2. Within the element, the distributed shear load is denoted as f sub y of eta sub 1 times z sub k plus eta sub 2 times z sub k plus 1, all at time t. The distributed moment is denoted as m sub x of eta sub 1 times z sub k plus eta sub 2 times z sub k plus 1, all at time t. The right edge is the node at z sub k plus 1, with vertical displacement u sub 2 k plus 1, shear cap Q sub 10, rotation u sub 2 k plus 2, and applied moment cap Q sub 8.

    Fig. 18.16   Beam element Ωk.

    u(k)(t) = u 2k1(t)u2k(t)u2k+1(t)u2k+2(t)u1(k)(t)u 2(k)(t)u 3(k)(t)T, (18.140) math-4243.png

    where u1(k)(t)math-4244.png, u2(k)(t), and u3(k)(t)math-4245.png are internal generalized displacement degrees of freedom. Rotation and displacement functions within the element are expressed in terms of the 2X7 shape function matrix and the 7X1 displacement vector:

    ϕx(k)(ζ,t) v(k)(ζ,t) = [N(ζ)] u(k)(t), (18.141) math-4246.png

    where the shape function matrix is

    [N(ζ)] = 0 η1(ζ) 0 η2(ζ) 0 η3(ζ) 0 η1(η) 0 η2(ζ) 0 η3(ζ) 0 η4(ζ) . (18.142) math-4247.png

    The basis functions for the element are

    η1(ζ) = (1 ζ)/2η2(ζ) = (1 + ζ)/2η3(ζ) = 1 23 2 ζ2 1η 4(ζ) = 1 25 2ζ ζ2 1. (18.143) math-4248.png

    The virtual rotation and displacement within the element are

    δϕx δv = [N(ζ)] b(k) , (18.144) math-4249.png

    where the 7X1 vector b(k) = b2k1 b2k b2k+1 b2k+2 b1(k) b2(k) b3(k) Tmath-4250.png. The virtual generalized displacements b1(k)math-4251.png, b2(k), and b3(k)math-4252.png correspond to the internal degrees of freedom u1(k)(t)math-4253.png, u2(k)(t), and u3(k)(t)math-4254.png, respectively. The virtual generalized displacement vector {b(k)} is independent of the physical generalized displacement vector {u(k)}. The external virtual work of the non-conservative forces (18.138) for the elements is given by

    δWn.c. = k=1Mb 2k1Q2(k) + b 2kQ4(k) + b 2k+1Q8(k) + b 2k+2Q10(k) + k=1M b(k)11[N]T mx fy hk 2 dζ. (18.145) math-4255.png

    At the common node zk between elements Ωk − 1 and Ωk there is an equilibrium relation between the externally applied force Q2k − 1 and the externally applied moment Q2k and the internal actions at the end of element Ωk − 1 and the beginning of element Ωk. Refer figure 18.17. These relations are

    At a node shared by elements cap Omega sub k minus 1 and cap Omega sub k, the node experiences an equal and opposite reaction from the cap Q sub 8 and cap Q sub 10 of element k minus 1, and cap Q sub 2 and cap Q sub 4 of element k. These forces sum to oppose the applied moment Q sub 2 k and applied shear force cap Q sub 2 k minus 1 at the node.

    Fig. 18.17   Free body diagram at a node between two elements

    Q2k1 = Q8(k1) + Q 2(k)Q 2k = Q10(k1) + Q 4(k)k = 2,3,,M 1,and (18.146) Q1 = Q2(1)Q 2 = Q4(1)Q 2M+1 = Q8(M)Q 2M+2 = Q10(M). (18.147) math-4256.png

    We now write the virtual work of the non-conservative generalized forces as

    δWn.c. = k=1M b(k) Q(k) + F(k) , (18.148) math-4257.png

    where

    Q(k) = Q 2k1Q2kQ2k+1Q2k+2000T, and F(k)(t) =11[N]T mx η1(ζ)zk + η2(ζ)zk+1,t fy η1(ζ)zk + η2(ζ)zk+1,t hk 2 dζ. (18.149) math-4258.png

    The partial derivatives with respect to coordinate z in eq. (18.137) are replaced by derivatives with respect to dimensionless coordinate ζ using the chain rule. That is,

    ϕx z = ϕx ζ dζ dz = 2 hk ϕx ζ = 2 hkϕxdz = dz dζdζ = hk 2 dζ. (18.150) math-4259.png

    Note that in the following finite element development the prime superscript denotes a derivative with respect to ζ. The derivative of the rotation for element Ωk and the virtual rotation are

    ϕx = N ϕ(ζ) u(k) δϕ x = N ϕ(ζ) b(k) , (18.151) math-4260.png

    where the 1X7 matrix is given by

    Nϕ(ζ) = 0 η1 0 η2 0 η3 0 . (18.152) math-4261.png

    The shear strain for element Ωk and the virtual shear strain are

    2 hkv + ϕ x = Nψ(ζ) u(k) 2 hkδv + δϕ x = Nψ(ζ){b}, (18.153) math-4262.png

    where the 1X7 matrix is given by

    Nψ(ζ) = 2 hkη1 η 1 2 hkη2 η 2 2 hkη3 η 3 2 hkη4 . (18.154) math-4263.png

    Substitute eqs. (18.151) and (18.153) into the finite element representation of eq. (18.137), and substitute eq. (18.148) for the virtual work, to get

    k=1M {b(k)}T11 [N]T mrx2 0 0 m [N]{ü(k)} + 2 hk[Nϕ]TEI xx 2 hk[Nϕ]{u(k)}    + 2 hk[Nψ]Ts yy[Nψ]{u(k)}hk 2 dζ = k=1M{b(k)}T({Q(k)} + {F(k)}). (18.155) math-4264.png

    We satisfy eq. (18.155) for each element in the mesh by

    b(k) T [M] ü(k) + [K] u(k) Q(k) + F(k) = 0b(k) 0 7X1 . (18.156) math-4265.png

    Hence, the equation of motion for element Ωk is

    [M] ü(k) + [K] ü(k) = Q(k) + F(k) . (18.157) math-4266.png

    The mass, and stiffness matrices are

    [M] =11[N]T mrx2 0 0 m [N]hk 2 dζ, and [K] =11 2 hk Nϕ TEI xx 2 hk Nϕ + 2 hk Nψ Ts yy Nψ hk 2 dζ. (18.158) math-4267.png

    Perform the matrix algebra in eq. (18.158) to find the 7X7 mass matrix

    [M] = mhk 1/3 0 1/6 0 1/26 0 1/610 0 rx2/3 0 rx2/6 0 rx2/26 0 1/6 0 1/3 0 1/26 0 1/610 0 rx2/6 0 rx2/3 0 rx2/26 0 1/26 0 1/26 0 1/5 0 0 0 rx2/(26) 0 rx2/26 0 rx2/5 0 1/(610) 0 1/610 0 0 0 1/21 . (18.159) math-4268.png

    Perform the matrix algebra in of eq. (18.158) to find the 7X7 stiffness matrix

    [K] = syy/hk syy/2 syy/hk syy/2 0 syy/6 0 syy/2 EIxx/hk + hksyy/3 syy/2 EIxx/hk + hksyy/6 syy/6 hksyy/26 0 syy/hk syy/2 syy/hk syy/2 0 syy/6 0 syy/2 EIxx/hk + hksyy/6 syy/2 EIxx/hk + hksyy/3 syy/6 hksyy/26 0 0 syy/6 0 syy/6 2syy/hk 0 0 syy/6 hksyy/26 syy/6 hksyy/26 0 2EIxx/hk + hksyy/5 syy/15 0 0 0 0 0 syy/15 2syy/hk . (18.160) math-4269.png


    This page titled 18.8: Dynamic bending of a bar with two axes of symmetry is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Eric Raymond Johnson (Virginia Tech Libraries' Open Education Initiative) via source content that was edited to the style and standards of the LibreTexts platform.