Skip to main content
Engineering LibreTexts

3.2: A Simple 2-out-of-2 Scheme

  • Page ID
    7328
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    \(3.2\) A Simple 2-out-of-2 Scheme

    Believe it or not, we have already seen a simple secret-sharing scheme! In fact, it might even be best to think of one-time pad as the simplest secret-sharing scheme.

    Construction \(3.5\) (2-out-of-2 TSSS)
    fig-ch01_patchfile_01.jpg
    Figure \(\PageIndex{1}\): Copy and Paste Caption here. (Copyright; author via source)

    Since it’s a 2-out-of-2 scheme, the only authorized set of users is \(\{1,2\}\), so Reconstruct is written to expect both shares \(s_{1}\) and \(s_{2}\) as its inputs. Correctness follows easily from what we’ve already learned about the properties of XOR.

    Example \(\PageIndex{1}\)

    Example If we want to share the string \(m=1101010001\) then the Share algorithm might choose \[\begin{aligned} s_{1} &:=0110000011 \\ s_{2} &:=s_{1} \oplus m \\ &=0110000011 \oplus 1101010001=1011010010 \end{aligned}\] Then the secret can be reconstructed by XORing the two shares together, via: \[s_{1} \oplus s_{2}=0110000011 \oplus 1011010010=1101010001=m .\] Remember that this example shows just one possible execution of Share(1101010001), but Share is a randomized algorithm and many other values of \(\left(s_{1}, s_{2}\right)\) are possible.

    Theorem \(3.6\)

    Construction \(3.5\) is a secure 2-out-of-2 threshold secret-sharing scheme.

    Proof

    Let \(\Sigma\) denote Construction 3.5. We will show that \(\mathcal{L}_{\mathrm{tsss}-\mathrm{L}}^{\Sigma} \equiv \mathcal{L}_{\mathrm{tsss}-\mathrm{R}}^{\Sigma}\) using a hybrid proof.

    fig-ch01_patchfile_01.jpg
    Figure \(\PageIndex{1}\): Copy and Paste Caption here. (Copyright; author via source)
    As usual, the starting point is \(\mathcal{L}_{\mathrm{tsss}-\mathrm{L}}^{\Sigma}\), shown here with the details of the secret-sharing scheme filled in (and the types of the subroutine ar guments omitted to reduce clutter).
    fig-ch01_patchfile_01.jpg
    Figure \(\PageIndex{1}\): Copy and Paste Caption here. (Copyright; author via source)
    It has no effect on the library’s behavior if we duplicate the main body of the library into 3 branches of a new if-statement. The reason for doing so is that the scheme generates \(s_{1}\) and \(s_{2}\) differently. This means that our proof will eventually handle the 3 different unauthorized sets \((\{1\},\{2\}\), and \(\emptyset\) ) in fundamentally different ways.
    fig-ch01_patchfile_01.jpg
    Figure \(\PageIndex{1}\): Copy and Paste Caption here. (Copyright; author via source)
    The definition of \(s_{2}\) has been changed in the first if-branch. This has no effect on the library’s behavior since \(s_{2}\) is never actually used in this branch.
    fig-ch01_patchfile_01.jpg
    Figure \(\PageIndex{1}\): Copy and Paste Caption here. (Copyright; author via source)
    Recognizing the second branch of the if-statement as a one-time pad encryption (of \(m_{L}\) under key \(s_{1}\) ), we factor out the generation of \(s_{2}\) in terms of the library \(\mathcal{L}_{\text {ots-L }}^{\text {OTP }}\) from the one-time secrecy definition. This has no effect on the library’s behavior. Importantly, the subroutine in \(\mathcal{L}_{\text {ots-L }}^{\text {OTP }}\) expects two arguments, so that is what we must pass. We choose to pass \(m_{L}\) and \(m_{R}\) for reasons that should become clear very soon.
    fig-ch01_patchfile_01.jpg
    Figure \(\PageIndex{1}\): Copy and Paste Caption here. (Copyright; author via source)
    We have replaced \(\mathcal{L}_{\text {ots-L }}^{\text {OTP }}\) with \(\mathcal{L}_{\text {ots-R }}^{\text {OTP }}\). From the one-time secrecy of one-time pad (and the composition lemma), this change has no effect on the library’s behavior.
    fig-ch01_patchfile_01.jpg
    Figure \(\PageIndex{1}\): Copy and Paste Caption here. (Copyright; author via source)
    A subroutine has been inlined; no effect on the library’s behavior.
    fig-ch01_patchfile_01.jpg
    Figure \(\PageIndex{1}\): Copy and Paste Caption here. (Copyright; author via source)
    The code has been simplified. Specifically, the branches of the if-statement can all be unified, with no effect on the library’s behavior. The result is \(\mathcal{L}_{\text {tsss-R }}^{\Sigma}\).

    We showed that \(\mathcal{L}_{\mathrm{tsss}-\mathrm{L}}^{\Sigma} \equiv \mathcal{L}_{\text {hyb-1 }} \equiv \cdots \equiv \mathcal{L}_{\text {hyb-5 }} \equiv \mathcal{L}_{\mathrm{tsss}-\mathrm{R}}^{\Sigma}\), and so the secret-sharing scheme is secure.

    We in fact proved a slightly more general statement. The only property of one-time pad we used was its one-time secrecy. Substituting one-time pad for any other one-time secret encryption scheme would still allow the same proof to go through. So we actually proved the following:

    Theorem \(3.7\)

    If \(\sum\) is an encryption scheme with one-time secrecy, then the following 2-out-of-2 threshold secret-sharing scheme \(\mathcal{S}\) is secure:

    fig-ch01_patchfile_01.jpg
    Figure \(\PageIndex{1}\): Copy and Paste Caption here. (Copyright; author via source)

    This page titled 3.2: A Simple 2-out-of-2 Scheme is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mike Rosulek (Open Oregon State) via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?