Skip to main content
Engineering LibreTexts

1.2: Electronic Materials and Electronic Products

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Electronic Products

    Electronic Materials are what you find inside the components making up electronic products. They consist of some stuff that you cannot easily exchange with something else - not even in principle - without losing the function.

    • What you can change easily for example, is the material for the box, the housing. Use Al instead of plastic or vice versa for your video recorder - it would still work, needing at most some minor adjustments.
    • You also may change (in principle) the metal for real wires. Using Au, Ag, or Al instead of - let's say - Cu, makes little difference for the function.
    • But exchange any material in a "chip" (i.e. in an integrated circuit) with something else (even allowing for minor adjustments) - and that definitely will be the end of your product.

    Let's look at some typical products or product groups that contain electronic materials:

    • Electronics in general (Computer, TV, Radio, Radar, Microwave, ...).
    • Flat panel displays (FPD).
    • Micromechanics and Microsystems (MEMS).
    • Solar cells.
    • Lasers (in particular semiconductor Lasers).
    • Batteries, Accumulators; energy storage systems in general.
    • Sensors, in particular solid state sensors, that convert whatever they sense directly into a current or a voltage.
    • Fuel Cells.
    • Magnetic Memories.

    Looking at Components

    Consider, e.g., a laptop or notebook in more detail. If you take it apart, you find the "high tech" stuff:

    • Any number of chips, i.e. integrated circuits.
    • Some quartz oscillators.
    • A hard disc, i.e. a magnetic memory for the bulk memory.
    • A reading head for the hard disc that uses the "giant magnetoresistance effect"
    • A CD ROM, i.e. an optical memory and a semiconductor Laser
    • A flat-panel display (FPD) using "liqiud crystals", whichis pretty big as a single component, but cannot be subdivided in smaller pieces.

    But there is also "low tech" - or so it seems:

    • Capacitors and inductors.
    • Switches, connectors, the keyboard as a unit.
    • Insulation.
    • Mechanical stuff like the disk drive, but also the housing.

    Some components betray their key material in their name ("quartz" oscillator) or by common knowledge (who, besides some so-called intellectuals, does not know that the word "chip" is almost a synonym for Silicon?), but for most components we have to look deeper - we must open them up (which will almost always destroy them). What do we find?

    Electronic Materials

    Lets open up a chip. We find

    • Packaging material - either some polymer blend or ceramics.
    • A "chip" mostly consisting of Si, but interlaced in an intricate pattern with other materials like P, B, As, SiO2, Si3N4, MoSi2, W, TiN, Al, Cu....
    • A lead frame - the little pins sticking out of the package - made of some metal alloys.
    • Tiny wires connecting the leads to the chip or some pretty sophisticated stuff doing this job.

    Now open up the FPD. You will find many materials, the most suspicious beyond what we already found in chips are:

    • Liquid crystals, some strange liquid stuff.
    • Amorphous Si.
    • Indium tin oxide ITO, a transparent electrode.
    • Plastic foils acting as polarizers.
    • A plastic (or glass) front and end plate.

    Now lets look at the Laser coming with the CD drive:

    • You find a complex mix of GaAs, GaAlAs, some other elements, as well as wires and packaging materials.
    • And all of this is quite different from what you find in the Si chips!
    • Soon you would find GaN in your Laser diode - and the capacity of your CD memory will quadruple!

    We could continue this, but by now you got the idea:

    1.2: Electronic Materials and Electronic Products is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?