Skip to main content
Engineering LibreTexts

2.3: Systems of linear equations

  • Page ID
    18055
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    • \(\vec{u}=\underset{\sim}{A}\vec{v}\), or \(\underset{\sim}{A}\vec{v}=\vec{u}\), represents a set of linear equations that can (usually) be solved for \(\vec{v}\). If the matrix is square and \(\operatorname{det}(\underset{\sim}{A})\neq 0\), then \(\vec{v}=\underset{\sim}{A}^{-1}\vec{u}\).

    • A homogeneous set of equations has the form \(\underset{\sim}{A}\vec{v}=0\), i.e., it has \(\vec{v}=0\) as a solution (like homogeneous differential equations). In this case, nonzero solutions for \(\vec{v}\) exist only if \(\operatorname{det}(\underset{\sim}{A})=0\).


    This page titled 2.3: Systems of linear equations is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Bill Smyth via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.