Skip to main content
Engineering LibreTexts

16: Appendix E- Vector Identities

  • Page ID
    18043
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The following are true for all vectors \(\vec{u}\), \(\vec{v}\), \(\vec{w}\), and \(\vec{x}\) and scalars \(\phi\) and \(\psi\) that vary continuously in space.

      Algebraic identities:
    1. \((\vec{u} \times \vec{v}) \cdot \vec{w}=(\vec{w} \times \vec{u}) \cdot \vec{v}=(\vec{v} \times \vec{w}) \cdot \vec{u}\)
    2. \(\vec{u} \times(\vec{v} \times \vec{w})=(\vec{u} \cdot \vec{w}) \vec{v}-(\vec{u} \cdot \vec{v}) \vec{w}\)
    3. \((\vec{u} \times \vec{v})(\vec{w} \times \vec{x})=(\vec{u} \cdot \vec{w})(\vec{v} \cdot \vec{x})-(\vec{u} \cdot \vec{x})(\vec{v} \cdot \vec{w})\)
    4. Identities involving the gradient
    5. \(\vec{\nabla}(\phi+\Psi)=\vec{\nabla} \phi+\vec{\nabla} \psi\)
    6. \(\vec{\nabla}(\phi \psi)=\psi \vec{\nabla} \phi+\phi \vec{\nabla} \psi\)
    7. \(\vec{\nabla}(\vec{u} \cdot \vec{v})=[\vec{v} \cdot \vec{\nabla}] \vec{u}+\vec{v} \times(\vec{\nabla} \times \vec{u})+[\vec{u} \cdot \vec{\nabla}] \vec{v}+\vec{u} \times(\vec{\nabla} \times \vec{v})\)
    8. Identities involving the divergence
    9. \(\vec{\nabla} \cdot(\vec{u}+\vec{v})=\vec{\nabla} \cdot \vec{u}+\vec{\nabla} \cdot \vec{v}\)
    10. \(\vec{\nabla} \cdot(\phi \vec{u})=\vec{u} \cdot \vec{\nabla} \phi+\phi \vec{\nabla} \cdot \vec{u}\)
    11. \(\vec{\nabla} \cdot(\vec{u} \times \vec{v})=\vec{v} \cdot(\vec{\nabla} \times \vec{u})-\vec{u} \cdot(\vec{\nabla} \times \vec{v})\)
    12. Identities involving the curl
    13. \(\vec{\nabla} \times(\vec{u}+\vec{v})=\vec{\nabla} \times \vec{u}+\vec{\nabla} \times \vec{v}\)
    14. \(\vec{\nabla} \times(\phi \vec{u})=\vec{\nabla} \phi \times \vec{u}+\phi \vec{\nabla} \times \vec{u}\)
    15. \(\vec{\nabla} \times(\vec{u} \times \vec{v})=[\vec{v} \cdot \vec{\nabla}] \vec{u}-\vec{v}(\vec{\nabla} \cdot \vec{u})-[\vec{u} \cdot \vec{\nabla}] \vec{v}+\vec{u}(\vec{\nabla} \cdot \vec{v})\)
    16. \(\vec{\nabla} \times(\vec{\nabla} \times \vec{u})=\vec{\nabla}(\vec{\nabla} \cdot \vec{u})-\nabla^{2} \vec{u}\)
    17. \(\vec{\nabla} \cdot(\vec{\nabla} \times \vec{u})=0\)
    18. \(\vec{\nabla} \times(\vec{\nabla} \phi)=0\)
    19. Identities involving the Laplacian
    20. \(\nabla^{2}(\phi \psi)=\psi \nabla^{2} \phi+\phi \nabla^{2} \psi+2 \vec{\nabla} \phi \cdot \vec{\nabla} \psi\)
    21. \(\nabla^{2}(\phi \vec{u})=\vec{u} \nabla^{2} \phi+\phi \nabla^{2} \vec{u}+2(\vec{\nabla} \phi) \cdot \vec{\nabla} \vec{u}\)
    22. Identities involving the advective derivative
    23. \([\vec{u} \cdot \vec{\nabla}](\phi \vec{v})=(\vec{u} \cdot \vec{\nabla} \phi) \vec{v}+\phi([\vec{u} \cdot \vec{\nabla}] \vec{v})\)
    24. \([\vec{u} \cdot \vec{\nabla}](\vec{v} \cdot \vec{w})=([\vec{u} \cdot \vec{\nabla}] \vec{v}) \cdot \vec{w}+\vec{v} \cdot([\vec{u} \cdot \vec{\nabla}] \vec{w})\)
    25. \([\vec{u} \cdot \vec{\nabla}](\vec{v} \times \vec{w})=([\vec{u} \cdot \vec{\nabla}] \vec{v}) \times \vec{w}+\vec{v} \times([\vec{u} \cdot \vec{\nabla}] \vec{w})\)
    26. \([\vec{u} \cdot \vec{\nabla}] \vec{u} \equiv(\vec{\nabla} \times \vec{u}) \times \vec{u}+\frac{1}{2} \vec{\nabla}(\vec{u} \cdot \vec{u})\)


    This page titled 16: Appendix E- Vector Identities is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Bill Smyth via source content that was edited to the style and standards of the LibreTexts platform.