Skip to main content
Engineering LibreTexts

Bibliography

  • Page ID
    32696
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Abulnaga, B. E. (2002). Slurry Systems Handbook. USA: McGraw Hill.

    Azamathulla, H. M., & Ahmad, Z. (2013). Estimation of critical velocity for slurry transport through pipeline using adaptive neuro-fuzzy interference system and gene-expression programming. Journal of Pipeline Systems
    Engineering and Practice.
    , 131-137.

    Babcock, H. A. (1970). The sliding bed flow regime. Hydrotransport 1 (pp. H1-1 - H1-16). Bedford, England: BHRA.

    Bagnold, R. A. (1954). Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings Royal Society, Vol. A225., 49-63.

    Bagnold, R. A. (1957). The flow of cohesionless grains in fluids. Phil. Trans. Royal Society, Vol. A249, 235-297.

    Bain, A. G., & Bonnington, S. T. (1970). The hydraulic transport of solids by pipeline. Pergamon Press.

    Berg, C. H. (1998). Pipelines as Transportation Systems. Kinderdijk, the Netherlands: European Mining Course Proceedings, IHC-MTI.

    Berg, C. v. (2013). IHC Merwede Handbook for Centrifugal Pumps & Slurry Transportation. Kinderdijk, Netherlands: IHC Merwede.

    Berman, V. P. (1994). Gidro i aerodinamiceskie osnovy rascota truboprovodnych sistem gidrokontejnernogo i vysokonapornogo pnevmaticeskogo transporta. Lugansk: East Ukrainian State University.

    Bisschop, F., Miedema, S. A., Rhee, C. v., & Visser, P. J. (2014). Erosion experiments on sand at high velocities. To be submitted to the Journal of Hydraulic Engineering, 28.

    Blatch, N. S. (1906). Discussion of Works for the purification of the water supply of Washington D.C. Transactions ASCE 57., 400-409.

    Blythe, C., & Czarnotta, Z. (1995). Determination of hydraulic gradient for sand slurries. 8th International Freight Pipeline Society Symposium, (pp. 125-130). Pittsburg, USA.

    Bonneville, R. (1963). essais de synthese des lois debut d'entrainment des sediment sous l'action d'un courant en regime uniform. Chatou: Bulletin Du CREC, No. 5.

    Bonnington, S. T. (1961). Estimation of Pipe Friction Involved in Pumping Solid Material. BHRA, TN 708 (December 1961).

    Boothroyde, J., Jacobs, B. E., & Jenkins, P. (1979). Coarse particle hydraulic transport. Hydrotransport 6: 6th International Conference on the Hydraulic Transport of Solids in Pipes. (p. Paper E1). BHRA.

    Brauer, H. (1971). Grundlagen der einphasen- und mehrphasenstromungen. Verslag Sauerlander.

    Brooks, F. A., & Berggren, W. (1944). Remarks on turbulent transfer across planes of zero momentum exchange. Transactions of the American Geophysics Union, Pt. VI., 889-896.

    Brownlie, W. (1981). Compilation of alluvial channel data: laboratory and field, Technical Report KH-R-43B. Pasadena, California, USA: California Institute of Technology.

    Buffington, J. M. (1999). The legend of A.F. Shields. Journal of Hydraulic Engineering, 125, 376–387.

    Buffington, J. M., & Montgomery, D. R. (1997). A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resources Research, 33, 1993-2029.

    Camenen, B., & Larson, M. (2013). Accuracy of Equivalent Roughness Height Formulas in Practical Applications. Journal of Hydraulic Engineering., 331-335.

    Camenen, B., Bayram, A. M., & Larson, M. (2006). Equivalent roughness height for plane bed under steady flow. Journal of Hydraulic Engineering, 1146-1158.

    Charles, M. E. (1970). Transport of solids by pipeline. Hydrotransport 1. Cranfield: BHRA.

    Chaskelberg, K., & Karlin. (1976). Rascot gidrotransporta pesanych materialov. Moskov: Gidromechanizacija.

    Chepil, W. (1958). The use of evenly spaced hemispheres to evaluate aerodynamic force on a soil failure. Transaction of the American Geophysics Union, Vol. 39(3), 397-404.

    Chin, C. O., & Chiew, Y. M. (1993). Effect of bed surface structure on spherical particle stability. Journal of Waterway, Port, Coastal and Ocean Engineering, 119(3), 231–242.

    Clift, R., Wilson, K. C., Addie, G. R., & Carstens, M. R. (1982). A mechanistically based method for scaling pipeline tests for settling slurries. Hydrotransport 8 (pp. 91-101). Cranfield, UK.: BHRA Fluid Engineering.

    Clift, R., Wilson, K., Addie, G., & Carstens, M. (1982). A mechanistically based method for scaling pipeline tests for settling slurries. Hydrotransport 8 (pp. 91-101). Cranfield, UK.: BHRA.

    Colebrook, C. F., & White, C. M. (1937). Experiments with Fluid Friction in Roughened Pipes. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 161 (906). (pp. 367-381). London: Royal Society of London.

    Coleman, N. L. (1967). A theoretical and experimental study of drag and lift forces acting on a sphere resting on a hypothetical stream bed. International Association for Hydraulic Research,12th Congress, 3, pp. 185- 192.

    Condolios, E., & Chapus, E. E. (1963A). Transporting Solid Materials in Pipelines, Part I. Journal of Chemical Engineering, Vol. 70(13)., 93-98.

    Condolios, E., & Chapus, E. E. (1963B). Designing Solids Handling Pipelines Part II. Journal of Chemical Engineering, Vol. 70(14)., 131-138.

    Condolios, E., & Chapus, E. E. (1963C). Operating solids pipelines, Part III. Journal of Chemical Engineering, Vol. 70(15)., 145-150.

    Crowe, C. T. (2006). MultiPhase Flow Handbook. Boca Raton, Florida, USA: Taylor & Francis Group.

    Davies, J. T. (1987). Calculation of critical velocities to maintain solids in suspension in horizontal pipes. Chemical Engineering Science, Vol. 42(7)., 1667-1670.

    Dey, S. (1999). Sediment threshold. Applied Mathematical Modelling, 399-417.

    Dey, S. (2003). Incipient motion of bivalve shells on sand beds under flowing water. Journal of Hydraulic Engineering, 232-240.

    Dey, S. (2014). Fluvial Hydrodynamics. Kharagpur, India: Springer, GeoPlanet: Earth and Planetary Sciences. DHL. (1972). Systematic Investigation of Two Dimensional and Three Dimensional Scour, Report M648/M863. Delft, Netherlands: Delft Hydraulics Laboratory.

    Di Filice, R. (1999). The sedimentation velocity of dilute suspensions of nearly monosized spheres. International Journal of Multiphase Flows 25, 559-574.

    Dittrich, A., Nestmann, F., & Ergenzinger, P. (1996). Ratio of lift and shear forces over rough surfaces. Coherent flow structures in open channels., 126-146.

    Doron, P., & Barnea, D. (1993). A three layer model for solid liquid flow in horizontal pipes. International Journal of Multiphase Flow, Vol. 19, No.6., 1029-1043.

    Doron, P., & Barnea, D. (1995). Pressure drop and limit deposit velocity for solid liquid flow in pipes. Chemical Engineering Science, Vol. 50, No. 10., 1595-1604.

    Doron, P., & Barnea, D. (1996). Flow pattern maps for solid liquid flow in pipes. International Journal of Multiphase Flow, Vol. 22, No. 2., 273-283.

    Doron, P., Granica, D., & Barnea, D. (1987). Slurry flow in horizontal pipes, experimental and modeling. International Journal of Multiphase Flow, Vol. 13, No. 4., 535-547.

    Doron, P., Simkhis, M., & Barnea, D. (1997). Flow of solid liquid mixtures in inclined pipes. International Journal of Multiphase Flow, Vol. 23, No. 2., 313-323.

    Duckworth, & Argyros. (1972). Influence of density ratio on the pressure gradient in pipes conveying suspensions of solids in liquids. Hydrotransport 2. Coventry: BHRA.

    Durand, R. (1953). Basic Relationships of the Transportation of Solids in Pipes - Experimental Research. Proceedings of the International Association of Hydraulic Research. Minneapolis.

    Durand, R., & Condolios, E. (1952). Etude experimentale du refoulement des materieaux en conduites en particulier des produits de dragage et des schlamms. Deuxiemes Journees de l'Hydraulique., 27-55.

    Durand, R., & Condolios, E. (1952). Etude experimentale du refoulement des materieaux en conduites en particulier des produits de dragage et des schlamms. (Experimental study of the discharge pipes materieaux especially products of dredging and slurries). Deuxiemes Journees de l'Hydraulique., 27-55.

    Durand, R., & Condolios, E. (1956). Donnees techniques sur le refoulement des mixture en conduites. Revue de lÍndustriele Minerale, no. 22F, 460-481.

    Durand, R., & Condolios, E. (1956). Technical data on hydraulic transport of solid materials in conduits. Revue de L'Industrie Minerale, Numero Special 1F.

    Durepaire, M. P. (1939). Contribution a létude du dragage et du refoulement des deblais a état de mixtures. Annales des ponts et chaussees, Memoires I., 165-254.

    Egiazarof, I. (1965). Calculation of non-uniform sediment concentrations. Journal of the Hydraulic Division, ASCE, 91(HY4), 225-247.

    Einstein, A. (1905). On the motion of small particles suspended in liquids at rest required by the molecular kinetic theory of heat. Annalen der Physik Vol.17., 549-560.

    Ellis, H. S., & Round, G. F. (1963). Laboratory studies on the flow of Nickel-Water suspensions. Canadian Journal on Minerals & Mettalurgy, Bull. 56.

    Engelund, F., & Hansen, E. (1967). A monograph on sediment transport to alluvial streams. Copenhagen: Technik Vorlag.

    Fenton, J. D., & Abbott, J. E. (1977). Initial movement of grains on a stream bed: The effect of relative protrusion. Proceedings of Royal Society, 352(A), pp. 523–537. London.

    Fisher, J., Sill, B., & Clark, D. (1983). Organic Detritus Particles: Initiation of Motion Criteria on Sand and Gravel Beds. Water Resources Research, Vol. 19, No. 6., 1627-1631.

    Fitton, T. G. (2015). A deposit velocity equation for open channels and pipes. 17th International Conference on Transport & Sedimentatin of Solid Particles. (pp. 69-77). Delft, The Netherlands: Delft University of Technology.

    Fowkes, R. S., & Wancheck, G. A. (1969). Materials handling research: Hydraulic transportation of coarse solids. U.S. Department of the interior, Bureau of Mines, Report 7283.

    Franzi, G. (1941). Sul moto dei liquidi con materie solide in suspensione. Milano, Italy: Instituto di idraulica e costrusioni idrauliche dei politechnico di Milano, No. 47.

    Fuhrboter, A. (1961). Über die Förderung von Sand-Wasser-Gemischen in Rohrleitungen. Mitteilungen des Franzius-Instituts, H. 19.

    Fuhrboter, A. (1961). Über die Förderung von Sand-Wasser-Gemischen in Rohrleitungen. (On the advances of sand -water mixtures in pipelines). Mitteilungen des Franzius-Instituts, H. 19.

    Gandhi, R. (2015, February). Personal communication.

    Garcia, M. H. (2008). Sedimentation Engineering (Vol. 110). ASCE Manuals & Reports on Engineering Practise No. 110.

    Garside, J., & Al-Dibouni, M. (1977). Velocity-Voidage Relationships for Fluidization and Sedimentation in Solid-Liquid Systems. 2nd Eng. Chem. Process Des. Dev., 16, 206.

    Gibert, R. (1960). Transport hydraulique et refoulement des mixtures en conduites. Annales des Ponts et Chausees., 130(3), 307-74, 130(4), 437-94.

    Gillies, D. P. (2013). Particle contributions to kinematic friction in slurry pipeline flow, MSc Thesis. University of Alberta, Department of Chemical Engineering.

    Gillies, R. G. (1993). Pipeline flow of coarse particles, PhD Thesis. Saskatoon: University of Saskatchewan.

    Gillies, R. G. (2015). Personal communication.

    Gillies, R. G., & Shook, C. A. (1994). Concentration distributions of sand slurries in horizontal pipe flow. Particulate Science and Technology, Vol. 12., 45-69.

    Gillies, R. G., & Shook, C. A. (2000A). Modeling high concentration settling slurry flows. Canadian Journal of Chemical Engineering, Vol. 78., 709-716.

    Gillies, R. G., Schaan, J., Sumner, R. J., McKibben, M. J., & Shook, C. A. (2000B). Deposition velocities for Newtonian slurries in turbulent flow. Canadian Journal of Chemical Engineering, Vol. 78., 704-708.

    Gillies, R. G., Shook, C. A., & Wilson, K. C. (1991). An improved two layer model for horizontal slurry pipeline flow. Canadian Journal of Chemical Engineering, Vol. 69., 173-178.

    Gillies, R. G., Shook, C. A., & Xu, J. (2004). Modelling heterogeneous slurry flows at high velocities. The Canadian Journal of Chemical Engineering, Vol. 82., 1060-1065.

    Gogus, M., & Kokpinar, M. A. (1993). Determination of critical flow velocity in slurry transporting pipeline systems. Proceeding of the 12th International Conference on Slurry Handling and Pipeline Transport. (pp. 743-757). Bedfordshire, UK.: British Hydraulic Research Group.

    Govier, G. W., & Aziz, K. (1972). The Flow of Complex Mixtures in Pipes. New York: University of Calgary, Alberta, Canada.

    Grace, J. (1986). Contacting modes and behaviour classification of gas-solid and other two-phase suspensions. Canadian Journal of Chemical Engineering, vol. 64., 353-363.

    Graf, W. H., & Pazis, G. C. (1977). Les phenomenes de deposition et d’erosion dans un canal alluvionnaire. Journal of Hydraulic Research, 15, 151-165.

    Graf, W. H., Robinson, M. P., & Yucel, O. (1970). Critical velocity for solid liquid mixtures. Bethlehem, Pensylvania, USA.: Fritz Laboratory Reports, Paper 386. Lehigh University.

    Graf, W. H., Robinson, M., & Yucel, O. (1970). The critical deposit velocity for solid-liquid mixtures. Hydrotransport 1 (pp. H5-77-H5-88). Cranfield, UK: BHRA.

    Grant, W. D., & Madsen, O. S. (1982). Movable bed roughness in unsteady oscillatory flow. Journal Geophysics Resources, 469-481.

    Grunsven, F. v. (2012). Measuring the slip factor for various slurry flows using temperature calibrated Electrical Resistance Tomography. Delft, The Netherlands.: Delft University of Technology.

    Guo, J., & Julien, P. (2007). Buffer law and transitional roughness effects in turbulent open-channel flows. 5th International Symposium on Environmental Hydraulics, 4-7 December 2007. Tempe, Arizona, USA: ISEH.

    Harada, E., Kuriyama, M., & Konno, H. (1989). Heat transfer with a solid liquid suspension flowing through a horizontal rectangular duct. Heat Transfer Jap. Res. Vol. 18., 79-94.

    Hepy, F. M., Ahmad, Z., & Kansal, M. L. (2008). Critical velocity for slurry transport through pipeline. Dam Engineering, Vol. XIX(3)., 169-184.

    Hinze, J. (1975). Turbulence. McGraw Hill Book company.

    Hjulstrøm, F. (1935). Studies of the morphological activity of rivers as illustrated by the River Fyris. Bulletin of the Geological Institute, 25, 221–527. University of Uppsala.

    Hjulstrøm, F. (1939). Transportation of debris by moving water, in Trask, P.D., ed., Recent Marine Sediments. A Symposium: Tulsa, Oklahoma, American Association of Petroleum Geologists, (pp. 5-31). Tulsa, Oklahoma.

    Hofland, B. (2005). Rock & Roll. Delft, The Netherlands: PhD Thesis, Delft University of Technology.

    Howard, G. W. (1938). Transportation of Sand and Gravel in a 4 Inch Pipe. Transactions ASCE Vol. 104., No. 2039., 1334-1348.

    Howard, G. W. (1939). Discussion on: Transportation of sand and gravel in a four inch pipe. Transactions ASCE Vol. 104., 157, 316, 460, 1011.

    Hsu. (1986). Flow of non-colloidal slurries in pipeline. PhD Thesis, University of Illinois.

    Huisman, L. (1973-1995). Sedimentation & Flotation 1973-1995. Delft, Netherlands: Delft University of Technology.

    Hunt, J. N. (1954). The turbulent transport of suspended sediment in open channels. Royal Society of London, Proc. Series A, Vol. 224(1158)., 322-335.

    Ikeda, S. (1982). Incipient motion of sand particles on side slopes. Journal of the Hydraulic division, ASCE, 108(No. HY1).

    Ismail, H. M. (1952). Turbulent transfer mechanism and suspended sediment in closed channels. Transactions of ASCE, Vol. 117., 409-446.

    Iwagaki, Y. (1956). Fundamental study on critical tractive force. Transactions of the Japanese Society of Civil Engineers, Vol. 41, 1-21.

    Jufin, A. P. (1965). Gidromechanizacija. Moskau.

    Jufin, A. P., & Lopatin, N. A. (1966). O projekte TUiN na gidrotransport zernistych materialov po stalnym truboprovodam. Gidrotechniceskoe Strojitelstvo, 9., 49-52.

    Julien, P. (1995). Erosion and sedimentation. Cambridge University Press.

    Karabelas, A. J. (1977). Vertical Distribution of Dilute Suspensins in Turbulent Pipe Flow. AIChE Journal, Vol. 23(4)., 426-434.

    Karasik, U. A. (1973). Hydraulische Forderung von feinkorniqen Suspensionen (in russisch). Gidromechanika, S.BO ff, Vol. 25. Kiew.

    Kaushal, D. R. (1995). Prediction of particle distribution in the flow of multisized particulate slurries through closed ducts and open channels. Delhi, India: I.I.T.. Department of Applied Mechanics, PhD Thesis.

    Kaushal, D. R., & Tomita, Y. (2002B). Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries. International Journal of Multiphase Flow, Vol. 28., 1697-1717.

    Kaushal, D. R., & Tomita, Y. (2002C). An improved method for predicting pressure drop along slurry pipeline. Particulate Science and Technology: An International Journal, Vol. 20(4)., 305-324.

    Kaushal, D. R., & Tomita, Y. (2003B). Comparative study of pressure drop in multisized particulate slurry flow through pipe and rectangular duct. International Journal of Multiphase Flow, Vol. 29., 1473-1487.

    Kaushal, D. R., & Tomita, Y. (2013). Prediction of concentration distribution in pipeline flow of highly concentrated slurry. Particulate Science and Technology: An International Journal, Vol. 31(1)., 28-34.

    Kaushal, D. R., Sato, K., Toyota, T., Funatsu, K., & Tomita, Y. (2005). Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry. International Journal of Multiphase Flow, Vol. 31., 809-823.

    Kaushal, D. R., Seshadri, V., & Singh, S. N. (2002D). Prediction of concentration and particle size distribution in the flow of multi-sized particulate slurry through rectangular duct. Applied Mathematical Modelling, Vol. 26., 941-952.

    Kaushal, D. R., Seshadri, V., & Singh, S. N. (2003A). Concentration and particle size distribution in the flow of multi-sized particulate slurry through rectangular duct. Journal of Hydrology & Hydromechanics, 114-121.

    Kaushal, D. R., Tomita, Y., & Dighade, R. R. (2002A). Concentration at the pipe bottom at deposition velocity for transportation of commercial slurries through pipeline. Powder Technology Vol. 125., 89-101.

    Kazanskij, I. (1967). Vyzkum proudeni hydrosmesi voda-pisek (untersuchung uber sans-wasser stromungen). Mitteilungen des Franzius Instituts, Heft 33.

    Kazanskij, I. (1972). Berechnungsverfahren fur die Forderung von Sand-Wasser Gemischen in Rohrleitungen. Hannover: Franzius Institut, Heft 33.

    Kazanskij, I. (1978). Scale-up effects in hydraulic transport theory and practice. Hydrotransport 5 (pp. B3: 47-74). Cranfield, UK: BHRA Fluid Engineering.

    Kazanskij, I. (1980). Vergleich verschiedener Rohrmaterialen in Bezug auf Verschleiss und Energieverbrauch beim Hydrotransport in Rohrleitungen. VDI Berichte Nr. 371, pp. 51-58.

    Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133-166.

    King, R. P. (2002). Introduction to Practical Fluid Flow. University of Utah.: Butterworth Heineman.

    Kokpinar, M. A., & Gogus, M. (2001). Critical velocity in slurry transport in horizontal pipelines. Journal of Hydraulic Engineering, Vol. 127(9)., 763-771.

    Korzajev, M. (1964). Metod rascota parametrov gidrotransporta gruntov. Gidromechanizacija, Moskau.

    Kril, S. I. (1990). Nopernye vzvesenesuscie potoki (pressurised slurry flows). Kiev: Naukova Dumka.

    Krivenko. (1970). Energieverlust in zwei phasen stromungen in hochkonzentrierten grobdispersionen. Gidromechanica, Kiev.

    Kumar, U., Mishra, R., Singh, S. N., & Seshadri, V. (2003). Effect of particle gradation on flow characteristics of ash disposal pipelines. Powder Technology Vol. 132., 39-51.

    Kumar, U., Singh, S. N., & Seshadri, V. (2008). Prediction of flow characteristics of bimodal slurry in horizontal pipe flow. Particulate Science and Technology, Vol. 26., 361-379.

    Kurihara, M. (1948). On the critical tractive force. Research Institute for Hydraulic Engineering, Report No. 3, Vol. 4.

    Lahiri, S. K. (2009). Study on slurry flow modelling in pipeline. Durgapur, India: National Institute of Technology, Durgapur, India.

    Lane, E. W., & Kalinske, A. A. (1941). Engineering calculations of suspended sediment. Trans. Am. Geophysics Union, Vol. 20(3)., 603-607.

    Liu, Z. (2001). Sediment Transport. Lecture notes. Aalborg University.

    Longwell, P. A. (1977). Mechanics of Fluid Flow. New York: McGraw Hill.

    Luckner, T. (2002). Zum Bewegungsbeginn von Sedimenten. Dissertation. Darmstadt, Germany: Technische Universitat Darmstadt.

    Madsen, O. S., Wright, L. D., Boon, J. D., & Chrisholm, T. A. (1993). Wind stress, bed roughness and sediment suspension on the inner shelf during an extreme storm event. Continental Shelf Research 13, 1303-1324.

    Madsen, O., & Grant, W. (1976). Sediment transport in the coastal environment. Cambridge, Massachusetts, USA: Technical report 209, M.I.T.

    Mantz, P. A. (1977). Incipient transport of fine grains and flakes by fluids—Extended Shields diagram. Journal of Hydraulic Division, ASCE, 103(6), 601-615.

    Marsh, N. A., Western, A. W., & Grayson, R. B. (2004, July 1). Comparison of Methods for Predicting Incipient Motion for Sand Beds. Journal of Hydraulic Engineering, 130(No. 7, July 1, 2004)).

    Matousek, V. (1996). Solids Transportation in a Long Pipeline Connected with a Dredge. Terra et Aqua 62., 3-11.

    Matousek, V. (1997). Flow Mechanism of Sand/Water Mixtures in Pipelines, PhD Thesis. Delft, Netherlands: Delft University of Technology.

    Matousek, V. (2004). Dredge Pumps & Slurry Transport, Lecture Notes. Delft: Delft University of Technology.

    Matousek, V. (2007). Interaction of slurry pipe flow with a stationary bed. Journal of the South African Institute of Mining and Metallurgy, 107(6)., 367-374.

    Matousek, V. (2009). Predictive model for frictional pressure drop in settling-slurry pipe with stationar deposit. Powder Technology, 367-374.

    Matousek, V. (2011). Solids Transport Formula in Predictive Model for Pipe Flow of Slurry above Deposit. Particulate Science and Technology, Vol. 29(1)., 89-106.

    Matousek, V., & Krupicka, J. (2009). On equivalent roughness of mobile bed at high shear stress. Journal of Hydrology & Hydromechanics, Vol. 57-3., 191-199.

    Matousek, V., & Krupicka, J. (2010). Modeling of settling slurry flow around deposition limit velocity. Hydrotransport 18 (p. 12). Rio de Janeiro, Brazil: BHR Group.

    Matousek, V., & Krupicka, J. (2010). Semi empirical formulae for upper plane bed friction. Hydrotransport 18 (pp. 95-103). BHRA.

    Matousek, V., & Krupicka, J. (2011). Unified model for coarse slurry flow with stationary and sliding bed. 15th International Conference on Transport & Sedimentation of Solid Particles., (p. 8). Wroclaw, Poland.

    Matousek, V., & Krupicka, J. (2014). Interfacial friction and transport in stratified flows. Maritime Engineering, Vol. 167(MA3), 125-134.

    Matousek, V., & Krupicka, J. (2014). One dimensional modelling of concentration distribution in pipe flow of combined load slurry. Powder Technology, Vol. 260., 42-51.

    Matousek, V., Krupicka, J., & Penik, V. (2014). Distribution of medium to coarse glass beads in slurry pipe flow: Evaluation of measured concentration profiles. Particulate Science and Technology, Vol. 32, 186-196.

    Meyer-Peter, E., & Muller, R. (1948). Formulas for bed load transport. 2nd Meeting of the International Association for Hydraulic Structures Research., (pp. 39-64).

    Miedema, S. (2010). Constructing the Shields curve, a new theoretical approach and its applications. WODCON XIX (p. 22 pages). Beijing, September 2010: WODA.

    Miedema, S. A. (1995). Dynamic Pump/Pipeline Behavior Windows. Software. Delft, The Netherlands: SAM-Consult.

    Miedema, S. A. (2012). Dredging Processes Hydraulic Transport. Delft, Netherlands: Delft University of Technology.

    Miedema, S. A. (2012A). Constructing the Shields Curve: Part A Fundamentals of the Sliding, Rolling and Lifting Mechanisms for the Entrainment of Particles. Journal of Dredging Engineering.

    Miedema, S. A. (2012B). Constructing the Shields Curve: Part B Sensitivity Analysis, Exposure & Protrusion Levels, Settling Velocity, Shear Stress & Friction Velocity, Erosion Flux and Laminar Main Flow. Journal of Dredging Engineering.

    Miedema, S. A. (2013). An overview of theories describing head losses in slurry transport. A tribute to some of the early researchers. OMAE 2013, 32nd International Conference on Ocean, Offshore and Arctic Engineering. (p. 18). Nantes, France: ASME.

    Miedema, S. A. (2013). Constructing the Shields Curve: Part C Cohesion by Silt, Hjulstrom, Sundborg. OMAE (p. 22). Nantes: ASME.

    Miedema, S. A. (2013S). Software MS Excel 2LM & 3LM. Retrieved from The Delft Head Loss & Limit Deposit Velocity Model: www.dhlldv.com

    Miedema, S. A. (2014). An analysis of slurry transport at low line speeds. ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, OMAE. (p. 11). San Francisco, USA.: ASME.

    Miedema, S. A. (2014). An analytical approach to explain the Fuhrboter equation. Maritime Engineering, Vol. 167, Issue 2., 68-81.

    Miedema, S. A. (2014). An Overview of Theories Describing Head Losses in Slurry Transport, A Tribute to Some of the Early Researchers. WEDA Journal of Dredging Engineering, Vol. 14, No. 1.

    Miedema, S. A. (2014W). DHLLDV/Experiments. Retrieved from The Delft Head Loss & Limit Deposit Velocity Model.: www.dhlldv.com

    Miedema, S. A. (2015). A head loss model for homogeneous slurry transport. Journal of Hydrology & Hydrodynamics, Vol. 63(1)., 1-12.

    Miedema, S. A. (2015). Head Loss Model for Slurry Transport in the Heterogeneous Regime. Ocean Engineering, Vol. 106., 360-370.

    Miedema, S. A. (2015A). A head loss model for homogeneous slurry transport for medium sized particles. Journal of Hydrology & Hydrodynamics, Vol. 63(1)., 1-12.

    Miedema, S. A. (2016). The heterogeneous to homogeneous transition for slurry flow in pipes. Ocean Engineering, Vol. 123., 422-431.

    Miedema, S. A. (June 2016). Slurry Transport: Fundamentals, A Historical Overview & The Delft Head Loss & Limit Deposit Velocity Framework. (1st Edition ed.). (R. C. Ramsdell, Ed.) Miami, Florida, USA: Delft University of Technology.

    Miedema, S. A. (September 2015). OE4607 Introduction Dredging Engineering (1st Edition ed.). Delft, The Netherlands: Delft University of Technology.

    Miedema, S. A. (September 2016). OE4607 Introduction Dredging Engineering (2nd Edition ed.). Delft, The Netherlands: Delft University of Technology.

    Miedema, S. A., & Matousek, V. (2014). An explicit formulation of bed friction factor for sheet flow. International Freight Pipeline Society Symposium, 15th. (p. 17 pages). Prague, Czech Republic: IFPS.

    Miedema, S. A., & Ramsdell, R. C. (2011). Hydraulic transport of sand/shell mixtures in relation with the critical velocity. Terra et Aqua, Vol. 122.

    Miedema, S. A., & Ramsdell, R. C. (2013). A head loss model for slurry transport based on energy considerations. World Dredging Conference XX (p. 14). Brussels, Belgium: WODA.

    Miedema, S. A., & Ramsdell, R. C. (2014). An Analysis of the Hydrostatic Approach of Wilson for the Friction of a Sliding Bed. WEDA/TAMU (p. 21). Toronto, Canada: WEDA.

    Miedema, S. A., & Ramsdell, R. C. (2014). The Delft Head Loss & Limit Deposit Velocity Model. Hydrotransport (p. 15). Denver, USA.: BHR Group.

    Miedema, S. A., & Ramsdell, R. C. (2015, May). Pages from The Delft Head Loss & Limit Deposit Velocity Framework: Wilson. Retrieved from ResearchGate: https://www.researchgate.net/publica...oss_Limit_Depo sit_Velocity_Framework_Wilson

    Miedema, S. A., & Ramsdell, R. C. (2015). The Limit Deposit Velocity Model, a New Approach. Journal of Hydrology & Hydromechanics, Vol. 63(4)., 15.

    Miedema, S. A., & Ramsdell, R. C. (2016). The Delft Head Loss & Limit Deposit Velocity Framework. Journal of Dredging Engineering, Vol. 15(2)., 3-33.

    Miedema, S. A., Riet, E. J., & Matousek, V. (2002). Theoretical Description And Numerical Sensitivity Analysis On Wilson Model For Hydraulic Transport Of Solids In Pipelines. WEDA Journal of Dredging Engineering.

    Miller, R., & Byrne, R. (1966). The angle of repose for a single grain on a fixed rough bed. Sedimentology 6, 303- 314.

    Ming, G., Ruixiang, L., Ni, F., & Liqun, X. (2007). Hydraulic transport of coarse gravel. WODCON XVIII. Orlando, Florida, USA: WODA.

    Moody, L. F. (1944). Friction Factors for Pipe Flow. Transactions of the ASME 66 (8)., 671-684.

    Morsi, S., & Alexander, A. (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, Vol. 55, 193-208.

    Mukhtar, A. (1991). Investigations of the flow of multisized heterogeneous slurries in straight pipe and pipe bends. Delhi, India: PhD Thesis, IIT.

    Nakagawa, H., & Nezu, I. (1977). Prediction of the contribution to the Reynolds stress from the bursting events in open-channel flows. Journal of Fluid Mechanics, 80, 99–128.

    Newitt, D. M., Richardson, J. F., & Gliddon, B. J. (1961). Hydraulic conveying of solids in vertical pipes. Transactions Institute of Chemical Engineers, Vol. 39., 93-100.

    Newitt, D. M., Richardson, J. F., Abbott, M., & Turtle, R. B. (1955). Hydraulic conveying of solids in horizontal pipes. Transactions of the Institution of Chemical Engineers Vo.l 33., 93-110.

    Nezu, I., & Nakagawa, H. (1993). Turbulence in Open Channel Flows. A. A. Balkema.

    Nezu, I., & Rodi, W. (1986). Open-channel flow measurements with a laser Doppler anemometer. Journal of Hydraulic Engineering . ASCE, 112, 335–355.

    Ni, F., Zhao, L., Matousek, V., Vlasblom, W. J., & Zwartbol, A. (2004). Two phase flow of highly concentrated slurry in a pipeline. Journal of Hydrodynamics, Series B, Vol. 16, No. 3., 325-331.

    Ni, F., Zhao, L., Xu, L., & Vlasblom, W. J. (2008). A model calculation for flow resistance in the hydraulic transport of sand. WODCON 18 (pp. 1377-1384). Orlando, Florida, USA: WODA.

    Nielsen, P. (1981). Dynamics and geometry of wave generated ripples. Journal of Geophysics Research, Vol. 86., 6467-6472.

    Nikuradse, J. (1933, July/August). Stromungsgesetze in rauen Rohren. VDI Forschungsheft 361, Beilage zo "Forschung auf dem Gebiete des Ingenieurwesens", Ausgabe B, Band 4.

    Nnadi, F. N., & Wilson, K. C. (1992). Motion of contact load particles at high shear stress. Journal of Hydraulic Engineering, Vol. 118., 1670-1684.

    Nnadi, F. N., & Wilson, K. C. (1995). Bed Load Motion at High Shear Stress: Dune Washout and Plane Bed Flow. Journal of Hydraulic Engineering, Vol. 121., 267-273.

    O'Brien, M. P. (1933). Review of the theory of turbulent flow and its relations to sediment transportation. Transactions of the American Geophysics Union, Vol. 14., 487-491.

    O'Brien, M. P., & Folsom, R. G. (1939). The transportation of sand in pipelines. Vol. 3,No. 7 of University of California publications in engineering.

    Ofei, T. N., & Ismail, A. Y. (August 2016). Eulerian-Eulerian simulation of particle liquid slurry flow in horizontal pipe. Journal of Petroleum Engineering., 18.

    Oroskar, A. R., & Turian, R. M. (1980). The hold up in pipeline flow of slurries. AIChE, Vol. 26., 550-558.

    Paphitis, D. (2001). Sediment movement under unidirectional flows: an assesment of empirical threshold curves. Coastal Engineering, 227-245.

    Parzonka, W., Kenchington, J. M., & Charles, M. E. (1981). Hydrotransport of solids in horizontal pipes: Effects of solids concentration and particle size on the deposit velocity. Canadian Journal of Chemical Engineering, Vol. 59., 291-296.

    Peker, S. M., & Helvaci, S. S. (2008). Solid-Liquid Two Phase Flow. Amsterdam, The Netherlands: Elsevier.

    Pilotti, M., & Menduni, G. (2001). Beginning of sediment transport of incoherent grains in shallow shear flows. Journal of Hydraulic Research, Vol. 39, No. 2., 115-124.

    Poloski, A. P., Etchells, A. W., Chun, J., Adkins, H. E., Casella, A. M., Minette, M. J., & Yokuda, S. (2010). A pipeline transport correlation for slurries with small but dense particles. Canadian Journal of Chemical Engineering, Vol. 88., 182-189.

    Postma, H. (1967). Sediment transport and sedimentation in the estuarine environment. Estuaries, AAAS, Washington D.C. Publ. 83., 158-179.

    Prandl, L. (1925). Z. angew. Math. Mech. 5 (1), 136-139.

    Pugh, F. J., & Wilson, K. C. (1999). Role of the interface in stratified slurry flow. Powder Technology, Vol. 104., 221-226.

    Pugh, F. J., & Wilson, K. C. (1999). Velocity and concentration distribution in sheet flow above plane beds. Journal of Hydraulic Engineering, 117-125.

    Ramsdell, R. C., & Miedema, S. A. (2010). Hydraulic transport of sand/shell mixtures. WODCON XIX. Beijing, China.: WODA.

    Ramsdell, R. C., & Miedema, S. A. (2013). An overview of flow regimes describing slurry transport. WODCON XX (p. 15). Brussels, Belgium.: WODA.

    Ramsdell, R. C., Miedema, S. A., & Talmon, A. (2011). Hydraulic transport of sand/shell mixtures. OMAE 2011. Rotterdam, Netherlands.: ASME.

    Raudviki, A. J. (1990). Loose Boundary Hydraulics. University of Auckland: Pergamon Press.

    Ravelet, F., Bakir, F., Khelladi, S., & Rey, R. (2012). Experimental study of hydraulic transport of large particles in horizontal pipes. Experimental Thermal and Fluid Science, 13.

    Reichardt, H. (1951). Vollstandige Darstellung der Turbulenten Geswindigkeitsverteilung in Glatten Leitungen. Zum Angew. Math. Mech., 3(7), 208-219.

    Richardson, J. F., & Zaki, W. N. (1954). Sedimentation & Fluidization: Part I. Transactions of the Institution of Chemical Engineering 32, 35-53.

    Riet, E. J., Matousek, V., & Miedema, S. A. (1995). A Reconstruction of and Sensitivity Analysis on the Wilson Model for Hydraulic Particle Transport. Proc. 8th Int. Conf. on Transport and Sedimentation of Solid Particles. Prague, Czech Republic.

    Riet, E. J., Matousek, V., & Miedema, S. A. (1996). A Theoretical Description and Numerical Sensitivity Analysis on Wilson's Model for Hydraulic Transport in Pipelines. Journal of Hydrology & Hydromechanics.

    Rijn, L. v. (1984). Sediment transport: Part I: Bed load transport. Journal of Hydraulic Engineering, Vol. 110(10), 1431-1456.

    Rijn, L. v. (1993). Principles of Sediment Transport, Part 1. . Blokzijl: Aqua Publications.

    Rijn, L. v. (2006). Principles of sediment transport in rivers, estuaries and coastal areas, Part II: Supplement 2006. Utrecht & Delft: Aqua Publications, The Netherlands.

    Roberts, J., Jepsen, R., Gotthard, D., & Lick, W. (1998). Effects of particle size and bulk density on erosion of quartz particles. Journal of Hydraulic Engineering, 1261-1267.

    Robinson, M. P. (1971). Critical deposit velocities for low concentration solid-liquid mixtures. MSc Thesis. Lehigh University, Fritz Laboratory.

    Robinson, M. P., & Graf, W. H. (1972). Critical deposit velocities for low concentration sand water mixtures. ASCE National Water Resources EnVg Meeting Preprint 1637, January 1972. Paper 1982. Atlanta, Georgia, USA.: Lehigh University, Fritz Laboratory.

    Roco, M. C., & Shook, C. A. (1983). Modeling of Slurry Flow: The effect of particle size. The Canadian Journal of Chemical Engineering, Vol. 61., 494-503.

    Rouse, H. (1937). Modern conceptions of the mechanics of fluid turbulence. Transactions of the American Society of Cicil Engineers, Vol. 102, 463-505, Discussion 506-543.

    Rowe, P. (1987). A convinient empirical equation for estimation of the Richardson-Zaki exponent. Chemical Engineering Science Vol. 42, no. 11, 2795-2796.

    Rowe, P. N. (1987). A convinient empirical equation for estimation of the Richardson-Zaki exponent. Chemical Engineering Science Vol. 42, no. 11, 2795-2796.

    Saffman, P. G. (1965). The lift on small sphere in a slow shear low. Journal of Fluid Mechanics, 22, 385-400.

    Sanders, R. S., Sun, R., Gillies, R. G., McKibben, M., Litzenberger, C., & Shook, C. A. (2004). Deposition Velocities for Particles of Intermediate Size in Turbulent Flows. Hydrotransport 16 (pp. 429-442).

    Schaan, J., & Shook, C. A. (2000). Anomalous friction in slurry flows. Canadian Journal of Chemical Engineering, Vol. 78., 726-730. Santiago, Chile.: BHR Group.

    Scheurel, H. G. (1985). Rohrverschleiss beim hydraulischen feststoffentransport. Karlsruhe: Universitat Karlsruhe.

    Schiller, R. E., & Herbich, J. B. (1991). Sediment transport in pipes. Handbook of dredging. New York: McGraw-Hill.

    Schlichting, H. (1968). Boundary layer theory. 6th ed. New York: McGraw-Hill.

    Sellgren, A., & Wilson, K. (2007). Validation of a four-component pipeline friction-loss model. Hydrotransport 17 (pp. 193-204). BHR Group.

    Sellgren, A., Visintainer, R., Furlan, J., & Matousek, V. (2014). Pump and pipeline performance when pumping slurries with different particle gradings. Hydrotransport 19 (pp. 131-143). Denver, Colorado, USA.: BHR Group.

    Sellgren, A., Visintainer, R., Furlan, J., & Matousek, V. (2016). Pump and pipeline performance when pumping slurries with different particle gradings. The Canadian Journal of Chemical Engineering, Vol. 94(6), 1025-1031.

    Seshadri, V., Singh, S. N., & Kaushal, D. R. (2006). A model for the prediction of concentration and particle size distribution for the flow of multisized particulate suspensions through closed ducts and open channels. Particulate Science and Technology: An International Journal., 239-258.

    Shields, A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilung der Preussischen Versuchsanstalt fur Wasserbau und Schiffbau, Heft 26, Berlin. Belin.

    Shook, C. A., Geller, L., Gillies, R. G., Husband, W. H., & Small, M. (1986). Experiments with coarse particles in a 250 mm pipeline. 10th International Conference on the Hydraulic Transport of Solids in Pipelines (Hydrotransport 10). (pp. 219-227). Cranfield, UK.: BHRA Fluid Eng.

    Shook, C. A., Gillies, R. G., & Sanders, R. S. (2002). Pipeline Hydrotransport with Application in the Oil Sand Industry. Saskatoon, Canada: Saskatchewan Research Council, SRC Publication 11508-1E02.

    Shook, C., & Roco, M. (1991). Slurry Flow, Principles & Practice. Boston: Butterworth Heineman.

    Silin, M. O., Kobernik, S. G., & Asaulenko, I. A. (1958). Druckhohenverluste von Wasser und Wasser-Boden- Gemischen in Rohrleitungen grossen Durchmessers. Ukrain: Dopovidi Akad. Nauk. Ukrain RSR.

    Silin, N. A., & Kobernik, S. G. (1962). Rezimy raboty zemlijesosnych snarjadov, Kijev.

    Simons, D. (1957). Theory and design of stable channels in alluvial material. PhD thesis: Colorado State University.

    Sinclair, C. G. (1962). The limit deposit velocity of heterogeneous suspensions. Proceedings Symposium on the Interaction Btween Fluids and Particles. Institute of Chemical Engineers.

    Smoldyrev. (1970). Truboprowodnyi transport( rohrleitungstransport). Moskau.

    Sobota, J., & Kril, S. I. (1992). Liquid and solid velocity during mixture flow. Proceedings 10th International Colloquium Massenguttransport durch Rohrleitungen., (p. K). Meschede, Germany.

    Soleil, G., & Ballade, P. (1952). Le transport hydraulique des materiaux dans les travaux publics, observations des resultats d'essais en grandeur nature. Deuxiemes Journees de l'Hydraulique, 9-26.

    Soulsby, R., & Whitehouse, R. (1997). Threshold of sediment motion in coastal environment. Proceedings Pacific Coasts and Ports. (pp. 149-154). Christchurch, New Zealand: University of Canterbury.

    Souza Pinto, T. C., Moraes Junior, D., Slatter, P. T., & Leal Filho, L. S. (2014). Modelling the critical velocity for heterogeneous flow of mineral slurries. International Journal of Multiphase Flow., 31-37.

    Spelay, R., Hashemi, S. A., Gillies, R. G., Hegde, R., Sanders, R. S., & Gillies, D. G. (2013). Governing friction loss mechanisms and the importance of offline characterization tests in the pipeline transport of dense coarse particle slurries. Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting. (pp. 1-7). Incline Village, Nevada, USA.: FEDSM2013.

    Stevenson, P., Cabrejos, F. J., & Thorpe, R. B. (2002). Incipient motion of particles on a bed of like particles in hydraulic and pneumatic conveying. Fourth World Congress of Particle Technology, Sydney, 21st25th July (paper 400). Sydney.

    Stevenson, P., Thorpe, R. B., & Davidson, J. F. (2002). Incipient motion of a small particle in the viscous boundary-layer at a pipe wall. Chemical Engineering Science, 57, 4505–4520.

    Sundborg, A. (1956). The River Klarålven: Chapter 2. The morphological activity of flowing water erosion of the stream bed. Geografiska Annaler, 38, 165-221.

    Swamee, P. K. (1993). Critical depth equations for irrigation canals. Journal of Irrigation and Drainage Engineering, ASCE., 400-409.

    Swamee, S. E., & Jain, K. A. (1976). Explicit equations for pipe-flow problems. Journal of the Hydraulics Division (ASCE) 102 (5)., 657-664.

    Talmon, A. (2011). Hydraulic Resistance of Sand-Water Mixture Flow in Vertical Pipes. T&S, Transport and Sedimentation of Solid Particles (pp. 137-147). Wroclaw, Poland: T&S.

    Talmon, A. (2013). Analytical model for pipe wall friction of pseudo homogeneous sand slurries. Particulate Science & technology: An International Journal, 264-270.

    Televantos, Y., Shook, C. A., Carleton, A., & Street, M. (1979). Flow of slurries of coarse particles at high solids concentrations. Canadian Journal of Chemical Engineering, Vol. 57., 255-262.

    Thomas, A. (1976). SCALE-UP METHODS FOR PIPELINE TRANSPORT OF SLURRIES. International Journal of Mineral Processing, Vol. 3., 51-69.

    Thomas, A. D. (1979). Predicting the deposit velocity for horizontal turbulent pipe flow of slurries. International Journal of Multiphase Flow, Vol. 5., 113-129.

    Thomas, A. D. (2014). Slurries of most interest to the mining industry flow homogeneously and the deposit velocity is the key parameter. HydroTransport 19. (pp. 239-252). Denver, Colorado, USA.: BHR Group.

    Thomas, A. D. (2015). A modification of the Wilson & Judge deposit velocity, extending its application to finer particles and larger pipe sizes. 17th International Conference on Transport & Sedimentation of Solid Particles. (pp. 335-344). Delft, The Netherlands: Delft Univesity of Technology.

    Thomas, D. G. (1962). Transport Characteristics of Suspensions: Part VI. Minimum velocity for large particle size suspensions in round horizontal pipes. A.I.Ch.E. Journal, Vol.8(3)., 373-378.

    Thomas, D. G. (1965). Transport characteristics of suspensions: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. Journal Of Colloidal Sciences, Vol. 20., 267-277.

    Turian, R. M., & Yuan, T. F. (1977). Flow of slurries in pipelines. AIChE Journal, Vol. 23., 232-243.

    Turian, R. M., Hsu, F. L., & Ma, T. W. (1987). Estimation of the critical velocity in pipeline flow of slurries. Powder Technology, Vol. 51., 35-47.

    Turner, T. (1996). Fundamentals of Hydraulic Dredging. New York: ASCE.

    Turton, R., & Levenspiel, O. (1986). A short note on the drag correlation for spheres. Powder technology Vol. 47, 83-85.

    Vanoni, V. A. (1975). Sedimentation Engineering: American Society of Civil Engineers, Manuals and Reports on Engineering Practice. No. 54. P.745.

    Vlasak, P. (2008). Laminar, transitional and turbulent flow of fine grained slurries in pipelines. Prague.: Czech Technical University in Prague, Fakulty of Civil Engineering.

    Vlasak, P., Chara, Z., Krupicka, J., & Konfrst, J. (2014). Experimental investigation of coarse particles water mixture flow in horizontal and inclined pipes. Journal of Hydrology & Hydromechanics, Vol. 62(3)., 241- 247.

    Vlasak, P., Kysela, B., & Chara, Z. (2012). FLOW STRUCTURE OF COARSE-GRAINED SLURRY IN A HORIZONTAL PIPE. Journal of Hydrology & Hydromechanics, Vol. 60., 115-124.

    Vocadlo, J. J. (1972). Prediction of pressure gradient for the horizontal turbulent flow of slurries. Hydrotransport 2. Coventry: BHRA.

    Vocadlo, J. J., & E., C. M. (1972). Prediction of pressure gradient for the horizontal turbulent flow of slurries. Conference on the Hydraulic Transport of Solids in Pipes. Warwick, England: British Hydromechanics Research Association.

    Wallis, G. (1969). One Dimensional Two Phase Flow. McGraw Hill.

    Wasp, E. J. (1963). Cross country coal pipeline hydraulics. Pipeline News., 20-28.

    Wasp, E. J., & Slatter, P. T. (2004). Deposition velocities for small particles in large pipes. 12th International Conference on Transport & Sedimentation of Solid Particles, (pp. 20-24). Prague, Czech Republic.

    Wasp, E. J., Kenny, J. P., & Gandhi, R. L. (1977). Solid liquid flow slurry pipeline transportation. Transactions Technical Publications.

    Wasp, E. J., Kenny, J. P., Aude, T. C., Seiter, R. H., & Jacques, R. B. (1970). Deposition velocities transition velocities and spatial distribution of solids in slurry pipelines. Hydro Transport 1, paper H42. (pp. 53-76). Coventry: BHRA Fluid Engineering.

    Welte, A. (1971). Grundlagen der Berechnung der Rohrleitungsdruckverluste. Konstruction 23, Heft 5 & 6.

    Westendorp, J. H. (1948). Verslag literatuurstudie over persen van zand M.276. Delft, Netherlands: Delft Hydraulics Laboratory.

    White, C. M. (1940). The equilibrium of grains on the bed of a stream. Proceedings Royal Society of London, A174, pp. 322-338.

    Whitlock, L., Wilson, K. C., & Sellgren, A. (2004). Effect of near-wall lift on frictional characteristics of sand slurries. Hydrotransport 16 (pp. 443-454). Cranfield, UK.: BHR Group.

    Wiberg, P. L., & Smith, J. D. (1987A). Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resources Research, 23(8), 1471–1480.

    Wiberg, P., & Smith, J. (1987B). Initial motion of coarse sediment in streams of high gradient. Proceedings of the Corvallis Symposium. IAHS Publication No. 165.

    Wiedenroth, W. (1967). Untersuchungen uber die forderung von sand wasser gemischen durch rohrleitungen und kreiselpumpen. Hannover: PhD Thesis, Technische Hochschule Hannover.

    Wikramanayake, P. N., & Madsen, O. S. (1991). Calculation of movable bed friction factors. Vicksburg, Mississippi.: Tech. Rep. DACW-39-88-K-0047, 105 pp., Coastal Eng. Res. Cent.,.

    Wilcock, P. (1993). Critical shear stress of natural sediments. Journal of Hydraulic Engineering Vol. 119, No. 4., 491-505.

    Wilson, K. C. (1965). Application of the minimum entropy production principle to problems in two-phase flow, PhD Thesis. Kingston, Ontario, Canada.: Queens University.

    Wilson, K. C. (1966). Bed Load Transport at High Shear Stress. Journal of the Hydraulics Division, 49-59.

    Wilson, K. C. (1970). Slip point of beds in solid liquid pipeline flow. Journal of Hydraulic Division, Vol 96(HY1), 1-12.

    Wilson, K. C. (1970). Slip point of beds in solid-liquid pipeline flow. Proceedings American Society of Civil Engineers, Vol. 96, HY1.

    Wilson, K. C. (1972). A Formula for the Velocity Required to Initiate Particle Suspension in Pipeline Flow. Hydrotransport 2 (pp. E2 23-36). Warwick, UK.: BHRA Fluid Engineering.

    Wilson, K. C. (1974). Coordinates for the Limit of Deposition in Pipeline Flow. Hydrotransport 3 (pp. E1 1-13). Colorado School of Mines, Colorado, USA.: BHRA Fluid Engineering.

    Wilson, K. C. (1975). Stationary Deposits and Sliding Beds in Pipes Transporting Solids. Dredging Technology (pp. C3 29-40). College Station, Texas, USA.: BHRA Fluid Engineering.

    Wilson, K. C. (1976). A Unified Physically based Analysis of Solid-Liquid Pipeline Flow. Hydrotransport 4 (pp. A1 1-16). Banff, Alberta, Canada: BHRA Fluid Engineering.

    Wilson, K. C. (1979). Deposition limit nomograms for particles of various densities in pipeline flow. Hydrotransport 6 (p. 12). Canterbury, UK: BHRA Fluid Engineering.

    Wilson, K. C. (1979). Deposition limit nomograms for particles of various densities in pipeline flow. Hydrotransport 6 (p. 12). Canterbury, UK: BHRA.

    Wilson, K. C. (1980). Analysis of Slurry Flows with a Free Surface. Hydrotransport 7 (pp. 123-132). Sendai, Japan: BHRA Fluid Engineering.

    Wilson, K. C. (1984). Analysis of Contact Load Distribution and Application to Deposition Limit in Horizontal Pipes. Journal of Pipelines, Vol. 4., 171-176.

    Wilson, K. C. (1986). Effect of Solids Concentration on Deposit Velocity. Journal of Pipelines, Vol. 5., 251-257.

    Wilson, K. C. (1987). Analysis of Bed Load Motion at High Shear Stress. Journal of Hydraulic Engineering, Vol. 113., 97-103.

    Wilson, K. C. (1988). Evaluation of interfacial friction for pipeline transport models. Hydrotransport 11 (p. B4). BHRA Fluid Engineering.

    Wilson, K. C. (1989). Mobile Bed Friction at High Shear Stress. Journal of Hydraulic Engineering, Vol. 115., 825-830.

    Wilson, K. C., & Addie, G. R. (1997). Coarse particle pipeline transport: effect of particle degradation on friction. Powder Technology, Vol. 94., 235-238.

    Wilson, K. C., & Brown, N. P. (1982). Analysis of Fluid Friction in dense Phase Pipeline Flow. The Canadian Journal of Chemical Engineering, Vol. 60., 83-86.

    Wilson, K. C., & Judge, D. G. (1976). New Techniques for the Scale-Up of Pilot Plant Results to Coal Slurry Pipelines. Proceedings International Symposium on Freight Pipelines. (pp. 1-29). Washington DC, USA: University of Pensylvania.

    Wilson, K. C., & Judge, D. G. (1977). Application of Analytical Model to Stationary Deposit Limit in Sand Water Slurries. Dredging Technology (pp. J1 1-12). College Station, Texas, USA.: BHRA Fluid Engineering.

    Wilson, K. C., & Judge, D. G. (1978). Analytically based Nomographic Charts for Sand-Water Flow. Hydrotransport 5 (pp. A1 1-12). Hannover, Germany: BHRA Fluid Engineering.

    Wilson, K. C., & Judge, D. G. (1980). New Techniques for the Scale-up of Pilot Plant Results to Coal Slurry Pipelines. Journal of Powder & Bulk Solids Technology., 15-22.

    Wilson, K. C., & Nnadi, F. N. (1990). Behavior of Mobile Beds at High Shear Stress. Proceedings Coastal Engineering 22., (pp. 2536-2541). Delft.

    Wilson, K. C., & Pugh, F. J. (1988). Dispersive Force Basis for Concentration Profiles. Journal of Hydraulic Engineering, Vol. 114, No. 7., 806-810.

    Wilson, K. C., & Pugh, F. J. (1988). Dispersive Force Modelling of Turbulent Suspension in Heterogeneous Slurry Flow. The Canadian Journal of Chemical Engineering, Vol. 66., 721-727.

    Wilson, K. C., & Sellgren, A. (2001). Hydraulic transport of solids, Pump Handbook, pp. 9.321-9.349. McGraw- Hill.

    Wilson, K. C., & Sellgren, A. (2003). Interaction of Particles and Near-Wall Lift in Slurry Pipelines. Journal of Hydraulic Engineering, Vol. 129., 73-76.

    Wilson, K. C., & Sellgren, A. (2010). Behavior of intermediate particle slurries in pipelines. Hydrotransport 18 (pp. 117-128). Rio de Janeiro: BHR Group.

    Wilson, K. C., & Sellgren, A. (2012). Revised Method for Calculating Stratification Ratios for Heterogeneous Flows. 14th International Conference on Transport & Sedimentation of Solid Particles., (pp. 334-340).

    Wilson, K. C., & Watt, W. E. (1974). Influence of Particle Diameter on the Turbulent Support of Solids in Pipeline Flow. Hydrotransport 3 (pp. D1 1-9). Colorado School of Mines, Colorado, USA.: BHRA Fluid Engineering.

    Wilson, K. C., Addie, G. R., & Clift, R. (1992). Slurry Transport using Centrifugal Pumps. New York: Elsevier Applied Sciences.

    Wilson, K. C., Addie, G. R., Clift, R., & Sellgren, A. (1997). Slurry Transport using Centrifugal Pumps. Glasgow, UK.: Chapman & Hall, Blackie Academic & Professional.

    Wilson, K. C., Addie, G. R., Sellgren, A., & Clift, R. (2006). Slurry transport using centrifugal pumps. New York: Springer Science+Business Media Inc.

    Wilson, K. C., Clift, R., & Sellgren, A. (2002). Operating points for pipelines carrying concentrated heterogeneous slurries. Powder Technology, Vol. 123., 19-24.

    Wilson, K. C., Clift, R., Addie, G. R., & Maffet, J. (1990). Effect of Broad Particle Grading on Slurry Stratification Ratio and Scale-up. Powder Technology, 61., 165 - 172.

    Wilson, K. C., Sanders, R. S., Gillies, R. G., & Shook, C. A. (2010). Verification of the near wall model for slurry flow. Powder Technology, Vol. 197., 247-253.

    Wilson, K. C., Sellgren, A., & Addie, G. R. (2000). Near-wall fluid lift of particles in slurry pipelines. 10th Conference on Transport and Sedimentation of Solid Particles. Wroclav, Poland: T&S10.

    Wilson, K. C., Streat, M., & Bantin, R. A. (1972). Slip model correlation of dense two phase flow. Hydrotransport 2 (pp. B1 1-10). Warwick, UK: BHRA Fluid Engineering.

    Wilson, W. E. (1942). Mechanics of flow with non colloidal inert solids. Transactions ASCE Vol. 107., 1576- 1594.

    Wood, D. J. (1966). An explicit friction factor relationship. Civil Engineering, Vol. 36, ASCE., 60-61.

    Worster, R. C., & Denny, D. F. (1955). Hydraulic transport of solid materials in pipelines. Institution of Mechanical Engineers (London), 563-586.

    Wu, W., & Wang, S. (2006). Formulas for sediment porosity and settling velocity. Journal of Hydraulic Engineering, 132(8), 858-862.

    Yagi, T., Okude, T., Miyazaki, S., & Koreishi, A. (1972). An Analysis of the Hydraulic Transport of Solids in Horizontal Pipes. Nagase, Yokosuka, Japan.: Report of the Port & Harbour Research Institute, Vol. 11, No. 3.

    Yalin, M. S., & Karahan, E. (1979). Inception of sediment transport. ASCE Journal of the Hydraulic Division, 105, 1433–1443.

    Zandi, I. (1971). Hydraulic transport of bulky materials. In I. Zandi, Advances in SolidLiquid Flow in Pipes and its Applications. (pp. 1-38). Oxford: Pergamon Pres.

    Zandi, I., & Govatos, G. (1967). Heterogeneous flow of solids in pipelines. Proc. ACSE, J. Hydraul. Div.,, 93(HY3)., 145-159.

    Zanke, U. C. (1977). Berechnung der Sinkgeschwindigkeiten von Sedimenten. Hannover, Germany: Mitteilungen Des Francius Instituts for Wasserbau, Heft 46, seite 243, Technical University Hannover.

    Zanke, U. C. (2001). Zum Einfluss der Turbulenz auf den Beginn der Sedimentbewegung. Darmstadt, Germany: Mitteilungen des Instituts fur Wasserbau und Wasserwirtschaft der TU Darmstadt, Heft 120.

    Zanke, U. C. (2003). On the influence of turbulence on the initiation of sediment motion. International Journal of Sediment Research, 18(1), 17–31.

      • Was this article helpful?