Skip to main content
Engineering LibreTexts

10.3: Discussion and Exercises

  • Page ID
    8479
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The implicit representation of a complete binary tree as an array, or list, seems to have been first proposed by Eytzinger [27]. He used this representation in books containing pedigree family trees of noble families. The BinaryHeap data structure described here was first introduced by Williams [78].

    The randomized MeldableHeap data structure described here appears to have first been proposed by Gambin and Malinowski [34]. Other meldable heap implementations exist, including leftist heaps [16,48, Section 5.3.2], binomial heaps [75], Fibonacci heaps [30], pairing heaps [29], and skew heaps [72], although none of these are as simple as the MeldableHeap structure.

    Some of the above structures also support a \(\mathtt{decreaseKey(u,y)}\) operation in which the value stored at node \(\mathtt{u}\) is decreased to \(\mathtt{y}\). (It is a pre-condition that \(\mathtt{y}\le\texttt{u.x}\).) In most of the preceding structures, this operation can be supported in \(O(\log \mathtt{n})\) time by removing node \(\mathtt{u}\) and adding \(\mathtt{y}\). However, some of these structures can implement \(\mathtt{decreaseKey(u,y)}\) more efficiently. In particular, \(\mathtt{decreaseKey(u,y)}\) takes \(O(1)\) amortized time in Fibonacci heaps and \(O(\log\log \mathtt{n})\) amortized time in a special version of pairing heaps [25]. This more efficient \(\mathtt{decreaseKey(u,y)}\) operation has applications in speeding up several graph algorithms, including Dijkstra's shortest path algorithm [30].

    Exercise \(\PageIndex{1}\)

    Illustrate the addition of the values 7 and then 3 to the BinaryHeap shown at the end of Figure 10.1.2.

    Exercise \(\PageIndex{2}\)

    Illustrate the removal of the next two values (6 and 8) on the BinaryHeap shown at the end of Figure 10.1.3.

    Exercise \(\PageIndex{3}\)

    Implement the \(\mathtt{remove(i)}\) method, that removes the value stored in \(\mathtt{a[i]}\) in a BinaryHeap. This method should run in \(O(\log \mathtt{n})\) time. Next, explain why this method is not likely to be useful.

    Exercise \(\PageIndex{4}\)

    A \(d\)-ary tree is a generalization of a binary tree in which each internal node has \(d\) children. Using Eytzinger's method it is also possible to represent complete \(d\)-ary trees using arrays. Work out the equations that, given an index \(\mathtt{i}\), determine the index of \(\mathtt{i}\)'s parent and each of \(\mathtt{i}\)'s \(d\) children in this representation.

    Exercise \(\PageIndex{5}\)

    Using what you learned in Exercise \(\PageIndex{4}\), design and implement a DaryHeap, the \(d\)-ary generalization of a BinaryHeap. Analyze the running times of operations on a DaryHeap and test the performance of your DaryHeap implementation against that of the BinaryHeap implementation given here.

    Exercise \(\PageIndex{6}\)

    Illustrate the addition of the values 17 and then 82 in the MeldableHeap \(\mathtt{h1}\) shown in Figure 10.2.1. Use a coin to simulate a random bit when needed.

    Exercise \(\PageIndex{7}\)

    Illustrate the removal of the next two values (4 and 8) in the MeldableHeap \(\mathtt{h1}\) shown in Figure 10.2.1. Use a coin to simulate a random bit when needed.

    Exercise \(\PageIndex{8}\)

    Implement the \(\mathtt{remove(u)}\) method, that removes the node \(\mathtt{u}\) from a MeldableHeap. This method should run in \(O(\log \mathtt{n})\) expected time.

    Exercise \(\PageIndex{9}\)

    Show how to find the second smallest value in a BinaryHeap or MeldableHeap in constant time.

    Exercise \(\PageIndex{10}\)

    Show how to find the \(k\)th smallest value in a BinaryHeap or MeldableHeap in \(O(k\log k)\) time. (Hint: Using another heap might help.)

    Exercise \(\PageIndex{11}\)

    Suppose you are given \(\mathtt{k}\) sorted lists, of total length \(\mathtt{n}\). Using a heap, show how to merge these into a single sorted list in \(O(n\log k)\) time. (Hint: Starting with the case \(k=2\) can be instructive.)


    This page titled 10.3: Discussion and Exercises is shared under a CC BY license and was authored, remixed, and/or curated by Pat Morin (Athabasca University Press) .