Skip to main content
Engineering LibreTexts

OWL 2 Profiles Features List

  • Page ID
    7298
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    OWL 2 EL

    Supported class restrictions:

    – existential quantification to a class expression or a data range

    – existential quantification to an individual or a literal

    – self-restriction

    – enumerations involving a single individual or a single literal

    – intersection of classes and data ranges

    Supported axioms, restricted to allowed set of class expressions:

    – class inclusion, equivalence, disjointness

    – object property inclusion (w. or w.o. property chains), and data property inclusion

    – property equivalence

    – transitive object properties

    – reflexive object properties

    – domain and range restrictions

    – assertions

    – functional data properties

    – keys

    NOT supported in OWL 2 EL (with respect to OWL 2 DL):

    – universal quantification to a class expression or a data range

    – cardinality restrictions

    – disjunction

    – class negation

    – enumerations involving more than one individual

    – disjoint properties

    – irreflexive, symmetric, and asymmetric object properties

    – inverse object properties, functional and inverse-functional object properties

    OWL 2 QL

    The supported axioms in OWL 2 QL take into account what one can use on the left-hand side of the inclusion operator (\(\sqsubseteq\), SubClassOf) and what can be asserted on the right-hand side:

    • Subclass expressions restrictions:

    – a class

    – existential quantification (ObjectSomeValuesFrom) where the class is limited to owl:Thing

    – existential quantification to a data range (DataSomeValuesFrom)

    • Super expressions restrictions:

    – a class

    – intersection (ObjectIntersectionOf)

    – negation (ObjectComplementOf)

    – existential quantification to a class (ObjectSomeValuesFrom)

    – existential quantification to a data range (DataSomeValuesFrom)

    Supported Axioms in OWL 2 QL:

    – Restrictions on class expressions, object and data properties occurring in functionality assertions cannot be specialized

    – subclass axioms

    – class expression equivalence (involving subClassExpression), disjointness

    – inverse object properties

    – property inclusion (not involving property chains and SubDataPropertyOf)

    – property equivalence

    – property domain and range

    – disjoint properties

    – symmetric, reflexive, irreflexive, asymmetric properties

    – assertions other than individual equality assertions and negative property assertions (DifferentIndividuals, ClassAssertion, ObjectPropertyAssertion, and DataPropertyAssertion)

    NOT supported in OWL 2 QL (with respect to OWL 2 DL):

    – existential quantification to a class expression or a data range in the subclass position

    – self-restriction

    – existential quantification to an individual or a literal

    – enumeration of individuals and literals

    – universal quantification to a class expression or a data range

    – cardinality restrictions

    – disjunction

    – property inclusions involving property chains

    – functional and inverse-functional properties

    – transitive properties

    – keys

    – individual equality assertions and negative property assertions

    OWL 2 RL

    OWL 2 RL Supported in OWL 2 RL:

    – More restrictions on class expressions (see table 2 of [MGH+09]; e.g., no SomeValuesFrom on the right-hand side of a subclass axiom)

    – All axioms in OWL 2 RL are constrained in a way that is compliant with the restrictions in Table 2.

    – Thus, OWL 2 RL supports all axioms of OWL 2 apart from disjoint unions of classes and reflexive object property axioms.

    A quick one-liner of the difference is: No \(\forall\) and \(\neg\) on the left-hand side, and \(\exists\) and \(\sqcup\) on right-hand side of \(\sqsubseteq\.

    • Was this article helpful?