Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Engineering LibreTexts

3.5: Telegrapher’s Equations

( \newcommand{\kernel}{\mathrm{null}\,}\)

In this section, we derive the equations that govern the potential v(z,t) and current i(z,t) along a transmission line that is oriented along the z axis. For this, we will employ the lumped-element model developed in Section 3.4.

To begin, we define voltages and currents as shown in Figure 3.5.1.

m0079_Transmission_line_element_se170804.png
Figure 3.5.1: Lumped-element equivalent circuit transmission line model, annotated with sign conventions for potentials and currents. (© CC BY SA 3.0 Unported (modified))

We assign the variables v(z,t) and i(z,t) to represent the potential and current on the left side of the segment, with reference polarity and direction as shown in the figure. Similarly we assign the variables v(z+Δz,t) and i(z+Δz,t) to represent the potential and current on the right side of the segment, again with reference polarity and direction as shown in the figure. Applying Kirchoff’s voltage law from the left port, through RΔz and LΔz, and returning via the right port, we obtain:

v(z,t)(RΔz)i(z,t)(LΔz)ti(z,t)v(z+Δz,t)=0

Moving terms referring to current to the right side of the equation and then dividing through by Δz, we obtain

v(z+Δz,t)v(z,t)Δz=R i(z,t)+L ti(z,t)

Then taking the limit as Δz0:

zv(z,t)=R i(z,t)+L ti(z,t)

Applying Kirchoff’s current law at the right port, we obtain:

i(z,t)(GΔz)v(z+Δz,t)(CΔz)tv(z+Δz,t)i(z+Δz,t)=0

Moving terms referring to potential to the right side of the equation and then dividing through by Δz, we obtain

i(z+Δz,t)i(z,t)Δz=G v(z+Δz,t)+C tv(z+Δz,t)

Taking the limit as Δz0:

zi(z,t)=G v(z,t)+C tv(z,t)

Equations ??? and ??? are the telegrapher’s equations. These coupled (simultaneous) differential equations can be solved for v(z,t) and i(z,t) given R, G, L, C and suitable boundary conditions.

The time-domain telegrapher’s equations are usually more than we need or want. If we are only interested in the response to a sinusoidal stimulus, then considerable simplification is possible using phasor representation.1 First we define phasors ˜V(z) and ˜I(z) through the usual relationship:

v(z,t)=Re{˜V(z) ejωt}

i(z,t)=Re{˜I(z) ejωt}

Now we see:

zv(z,t)=zRe{˜V(z) ejωt}=Re{[z˜V(z)] ejωt}

In other words, v(z,t)/z expressed in phasor representation is simply ˜V(z)/z; and

ti(z,t)=tRe{˜I(z) ejωt}=Re{t[˜I(z)ejωt]}=Re{[jω˜I(z)]ejωt}

In other words, i(z,t)/t expressed in phasor representation is jω˜I(z). Therefore, Equation ??? expressed in phasor representation is:

z˜V(z)=[R+jωL] ˜I(z)

Following the same procedure, Equation ??? expressed in phasor representation is found to be:

z˜I(z)=[G+jωC] ˜V(z)

Equations ??? and ??? are the telegrapher’s equations in phasor representation.

The principal advantage of these equations over the time-domain versions is that we no longer need to contend with derivatives with respect to time – only derivatives with respect to distance remain. This considerably simplifies the equations.


  1. For a refresher on phasor analysis, see Section 1.5.↩

This page titled 3.5: Telegrapher’s Equations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Steven W. Ellingson (Virginia Tech Libraries' Open Education Initiative) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?