References
- Page ID
- 82581
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)[1] W. H. Wiser, Energy Resources: Occurrence, Production, Conversion, Use. New York: Springer, 2000.
[2] M. J. Moran, Availability Analysis. American Society of Mechanical, 1990.
[3] M. A. Kettani, Direct Energy Conversion. Addison Wesley, 1970.
[4] R. Decher, Direct Energy Conversion. Oxford, 1996.
[5] S. L. Soo, Direct Energy Conversion. Prentice Hall, 1968.
[6] A. R. von Hippel, Dielectrics and Waves. Wiley, 1954.
[7] A. Thompson and B. N. Taylor, Guide for the Internation System of Units. NIST, 2008. http://physics.nist.gov/Pubs/SP811/appenB9.html Date accessed 6-1-18.
[8] "Energy calculators." http://www.eia.gov/kids/energy.php?page=about_energy_conversion_calculator-basics. Date accessed 6-1-18.
[9] B. Streetman, Solid State Electronic Devices, 4 ed. New York: Prentice Hall, 1999.
[10] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. NY: John Wiley and Sons, 1991.
[11] N. N. Rao, Elements of Engineering Electromagnetics, 6 ed. New Jersey: Prentice Hall, 2004.
[12] J. W. Hill and R. H. Petrucci, General Chemistry. Pearson, 1999.
[13] M. G. Mayer, "Rare-earth and transuranic elements," Physical Review, vol. 60, 1941.
[14] B. G. Wybourne, Classical Groups for Physicists. New York, NY: Wiley, 1974.
[15] E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems. New York: Prentice Hall, 1968.
[16] "Ford focus review." http://www.edmunds.com/ford/focus/review.html. Date accessed 6-1-18.
[17] http://www.oreo.co.uk/products/original-oreo. Date accessed 6-1-18.
[18] T. K. Liu, "Gate dielectric scaling-integrating alternative high k gate dielectrics." http://www.cs.berkeley.edu/~tking/high.html. Date accessed 6-1-18.
[19] D. Wolfe, K. Flock, R. Therrien, R. Johnson, B. Rayner, L. Gunther, N. Brown, B. Clain, and G. Lucovsky, "Remote plasma-enhanced-metal organic chemical vapor deposition of zirconium oxide/silicon oxide alloy thin films for advanced high-k gate dielectrics," in Materials Research Society Symposium Proceedings, vol. 567 (Warrendale, PA), Materials Research Society, 1999, pp. 343-348.
[20] Y. Nishioka, "Ultrathin tantalum pent-oxide films for ulsi gate dielectrics," in Materials Research Society Symposium Proceedings, vol. 567 (Warrendale, PA), Materials Research Society, 1999, pp. 361- 370.
[21] http://www.digikey.com.
[22] P. Horowitz and W. Hill, Art of Electronics. Cambridge, 1989.
[23] B. Dobkin and J. Williams, Analog Circuit Design. Newnes, 2011.
[24] C. Klein, Mineral Science, 22 ed. New York: John Wiley, 2002.
[25] C. Kittel, Introduction to Solid State Physics, 7 ed. New York: John Wiley and Sons, 1996.
[26] N. W. Ashcroft and N. D. Mermin, Solid State Physics. Fort Worth: Saunders, 1976.
[27] R. J. Pressley, CRC Handbook of Lasers. Chemical Rubber Co, 1971.
[28] M. Tinkham, Group Theory and Quantum Mechanics. Dover, 1964.
[29] A. Schöenies, Kristallsysteme und Kristallstruktur. 1891.
[30] "Crystal systems." https://en.wikipedia.org/wiki/Crystal_system. Date accessed 6-1-18.
[31] A. Yariv, Quantum Electronics, 3 ed. Wiley, 1989.
[32] "Mindat website." http://www.mindat.org. Date accessed 6-1-18.
[33] R. Goldman, Ultrasonic Technology. Reinhold, 1962.
[34] P. K. Panda, "Review: environmentally friendly lead-free piezoelectric materials," Journal of Materials Science, vol. 44, pp. 5049-5062, 2009.
[35] A. V. Carazo, "Micromechatronics, inc. website." http://www.mmech.com/transformers/dc-dc-piezo-converter. Date accessed 6-1-18.
[36] S. R. Anton and H. A. Sodano, "A review of power harvesting using piezoelectric materials 2003-2006," Smart Materials and Structures, vol. 16, pp. R1-R21, 2007.
[37] H. E. Soisson, Instrumentation in Industry. Wiley, 1975.
[38] W. G. Cady, "Electroelastic and pyroelectric phenomena," International Critical Tables, pp. 207-212, 1929.
[39] B. Ertug, "The overview of the electrical properties of barium titanate," American Journal of Engineering Research, vol. 2, no. 8, pp. 1-7, 2013.
[40] W. C. Röntgen, "Pyro und piezoelektrische untersuchungen," Annalen der Physik, vol. 350, pp. 737-800, 1914.
[41] https://scientech-inc.com/categories/laser-power-measurement.html. Date accessed 6-1-18.
[42] R. W. Boyd, Nonlinear Optics. Academic press, 2003.
[43] S. R. Hoh, "Conversion of thermal to electrical energy with ferroelectric materials," Proceedings of the IEEE, vol. 51, pp. 838-845, 1963.
[44] H. Fritzsche, "Toward understanding the photoinduced changes in chalcogenide glasses," Semiconductors, vol. 32, no. 8, pp. 850-856, 1998.
[45] V. K. Tikhomirov, "Photoinduced effects in undoped and rare-earth doped chalcogenide glasses, review," Journal of Non-crystalline Solids, vol. 256, pp. 328-336, 1999.
[46] G. Baym, Lectures on Quantum Mechanics. Addison Wesley, 1990.
[47] N. Cohen, "Fractal antenna applications in wireless telecommunication," Electronics Industries Forum of New England, pp. 43-49, 1997.
[48] D. H. Werner and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, vol. 45, pp. 38-58, Feb. 2003.
[49] E. A. Wolff, Antenna Analysis. Wiley, 1966.
[50] S. H. Ward, ARRL Antenna Book, 22 ed. ARRL, 2012.
[51] P. S. Carney and J. C. Schotland, "Near-field tomography," Inside Out: Inverse Problems and Their Applications, vol. 47, pp. 133-168, 2003.
[52] T. O'Laughlin, "The ELF is here," Popular Communications, pp. 10- 13, April 1988.
[53] B. Villeneuve, "ELF Station Republic, MI." http://ss.sites.mtu.edu/mhugl/2015/10/10/elf-sta-republic-mi/, 2015.
[54] R. S. Carson, Radio Communication Concepts, Analog. Wiley, 1990.
[55] R. Wallace, "Antenna selection guide," TI Application Note AN058, 2010.
[56] R. Lewallen. http://www.eznec.com. Date accessed 6-1-18.
[57] "Hall effect sensing and application." http://sensing.honeywell.com/index.php?ci_id=47847. Date accessed 6-1-18.
[58] D. J. Epstein, "Permeability," Dielectric Materials and Applications, ed. A. R. von Hippel, pp. 122-134, 1954.
[59] B. Jeckelmann and B. Jeanneret, "The quantum Hall effect as an electrical resistance standard," Reports on Progress in Physics, vol. 64, pp. 1603-1655, 2001.
[60] J. O. Bockris and S. Srinivasan, Fuel Cells Their Electrochemistry. McGraw Hill, 1969.
[61] B. D. Iverson and S. Garimella, "Recent advances in microscale pumping technologies: a review and evaluation," Birck and NCN Publications, vol. 81, 2008. http://docs.lib.purdue.edu/nanopub/81.
[62] J. de Vicente, D. J. Klingenberg, and R. Hidalgo-Alvarez, "Magnetoheological fluids a review," Soft Matter, vol. 7, pp. 3701-3711, 2011.
[63] K. von Klitzing, G. Dorda, and M. Pepper, "New method for high accuracy determination of the fine-structure constant based on quantized Hall resistance," Physical Review Letters, vol. 45, no. 6, pp. 494- 498, 1980.
[64] D. C. Tsui, H. L. Störmer, and A. C. Gossard, "Two-dimensional magnetotransport in the extreme quantum limit," Physical Review Letters, vol. 48, no. 22, pp. 1559-1562, 1982.
[65] T. Chakaraborty and K. von Klitzing, "Taking stock of the quantum Hall effects: Thirty years on," arXiv preprint:1102.5250, 2011. https://arxiv.org/pdf/1102.5250.pdf.
[66] "A turning point for humanity: redefining the world's measurement system." https://www.nist.gov/si-redefinition/turning-point-humanity-redefining-worlds-measurement-system. Date accessed 6-25-18.
[67] E. Bellini, "Global installed PV capacity exceeds 300GW, IEA PVPS," PV magazine, 2017.
[68] A. Thompson and B. N. Taylor, Guide for the Use of the International System of Units. 2008.
[69] D. M. Chapin, "How to make solar cells," Radio Electronics, pp. 89- 94, Mar. 1960.
[70] A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.1), [Online]. Available: http:// physics.nist.gov/asd [2014, May 14]. National Institute of Standards and Technology, Gaithersburg, MD.
[71] C. Downs and T. E. Vandervelde, "Progress in infrared photodetectors since 2000," Sensors, vol. 13, no. 4, 2013.
[72] S. Graham, "Remote sensing," 1999. https://earthobservatory.nasa.gov/Features/RemoteSensing/remote.php.
[73] M. G. Thomas, H. N. Post, and R. DeBlasio, "Photovoltaic systems an end-of-millennium review," Progress in Photovoltaics Research and Applications, vol. 7, pp. 1-19, 1999.
[74] http://www.nrel.gov/learning/re_photovoltaics.html. Date accessed 9-6-12.
[75] http://www.mit.edu/~6.777/matprops/ito.htm. Date accessed 6- 1-18.
[76] J. J. Wysocki and P. Rappaport, "Effect of temperature on photovoltaic solar energy conversion," Journal of Applied Physics, vol. 31, p. 571, Mar. 1960.
[77] S. Kurtz, D. Levi, and K. Emery. https://www.nrel.gov/pv/assets/images/efficiency-chart.png, 2017.
[78] L. E. Chaar, L. A. Lamont, and N. E. Zein, "Review of photovoltaic technologies," Renewable and Sustainable Energy Reviews, vol. 15, pp. 2165-2175, 2011.
[79] B. Kippelen and J. L. Bredas, "Organic photovoltaics," Energy and Environmental Science, vol. 2, 2009.
[80] "The 2009 Nobel Prize in Physics." https://www.nobelprize.org/nobel_prizes/physics/laureates/2009/press.html, 2009.
[81] http://hyperphysics.phy-astr.gsu.edu/hbase/vision/rodcone.html. Date accessed 6-1-18.
[82] "Hamamatsu infrared detectors, selection guide." https://www.hamamatsu.com/resources/pdf/ssd/infrared_kird0001e.pdf, 2018. Date accessed 6-15-18.
[83] S. M. Sze, Physics of Semiconductor Devices. Wiley, 1969.
[84] W. T. Silfvast, Laser Fundamentals. Cambridge University press, 1996.
[85] D. Kule. https://en.wikipedia.org/wiki/File:Black_body.svg. Date accessed 6-10-18.
[86] J. T. Verdeyen, Laser Electronics. Prentice Hall, 1995.
[87] J. D. Cobine, Gaseous Conductors. Dover, 1958.
[88] M. F. Gendre, "Two centuries of electric light source innovations." http://www.einlightred.tue.nl/lightsources/history/light_history.pdf. Date accessed 6-1-18.
[89] J. B. Calvert. http://www.physics.csbsju.edu/370/jcalvert/dischg.htm.html, 2005.
[90] S. Nakamura, "GaN-based blue green semiconductor lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, pp. 435- 442, 1997.
[91] C. P. B. Geffroy, P. Roy, "Organic light-emitting diode technology: Materials, devices, and display technologies," Polymer International, vol. 55, 2006.
[92] M. G. Bernard and G. Duraffourg, "Laser conditions in semiconductors," Physica Status Solidi, vol. 1, pp. 699-703, 1961.
[93] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent light emission form GaAs junctions," Physical Review Letters, vol. 9, no. 9, pp. 366-368, 1962.
[94] H. Nelson, "Epitaxial growth from the liquid state and its application to the fabrication of tunnel and laser diodes," RCA Review, vol. 24, pp. 603-615, 1963.
[95] A. Y. Cho and J. R. Arthur, "Molecular beam epitaxy," Progress in Solid-State Chemistry, vol. 10, pp. 157-191, 1975.
[96] R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin, "Room-temperature laser operation of quantum well Ga1−xAlxAsGaAs laser diodes grown by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 32, pp. 295-297, 1978.
[97] M. N. Polyanskiy, "Refractive index database." http://refractiveindex.info/?shelf=main&book=GaAs&page=Skauli. Date accessed 6-1-18.
[98] H. Kressel and H. Nelson, "Close-confinement gallium arsenide pn junction lasers with reduced optical loss at room temperature," RCA Review, vol. 30, pp. 106-113, 1969.
[99] V. A. Donchenko, Y. E. Geints, V. A. Kharenkov, and A. A. Zemlyanov, "Nanostructured metal aggregate-assisted lasing in rhodamine 6G solutions," Optics and Photonics Journal, vol. 3, no. 8, 2013. http://file.scirp.org/Html/2-1190302_40925.htm.
[100] A. Ishibashi, "II-VI blue-green laser diodes," IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, pp. 741-748, 1995.
[101] J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers: design, growth, fabrication, and characterization," IEEE Journal of Quantum Electronics, vol. 27, pp. 1332-1346, 1991.
[102] M. J. Moran, H. N. Shapiro, D. D. Boettner, and M. B. Bailey, Fundamentals of Engineering Thermodynamics. Wiley, 2014.
[103] B. R. Munson, A. P. Rothmayer, T. H. Okiishi, and W. W. Huebsch, Fundamentals of Fluid Mechanics. Wiley, 2012.
[104] "Azo Materials website, diamond properties, applications." http://www.azom.com/properties.aspx?ArticleID=262, 2001.
[105] "Azo Materials website, stainless steel grade 304 (uns s30400)." http://www.azom.com/properties.aspx?ArticleID=965, 2001.
[106] "Azo Materials website, graphite." http://www.azom.com/properties.aspx?ArticleID=1630, 2002.
[107] "Azo Materials website, silicone rubber." http://www.azom.com/properties.aspx?ArticleID=920, 2001.
[108] J. M. Smith, H. C. V. Ness, and M. Abbott, Introduction to Chemical Engineering Thermodynamics. McGraw Hill, 2000.
[109] M. J. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics. Wiley, 2004.
[110] P. H. Egli, Thermoelectricity. New York: John Wiley, 1958.
[111] S. G. Carr, Essential Linear Circuit Analysis. 2019. Preprint.
[112] G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics, Basic Principles and New Materials Developments. Germany: Springer, 2001.
[113] N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2 ed. Oxford: Clarendon Press, 1979.
[114] W. M. Haynes, CRC Handbook of Chemistry and Physics, 93 ed. CRC press, 2013.
[115] R. Venkatasubramanian, E. Silvola, T. Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figure of merit," Nature, vol. 43, pp. 597-602, Oct. 2001.
[116] H. Beyer, J. Numus, H. Bottner, A. Lambrecht, T. Roch, and G. Bauer, "PbTe based superlattice structures with high thermoelectric efficiency," Applied Physics Letters, vol. 80, pp. 1215-1217, Feb. 2002.
[117] C. A. Gould, N. Y. A. Shammas, S. Grainger, and I. Taylor, "A comprehensive review of thermoelectric technology, micro-electrical and power generation properties," Proceedings of the 26th International Conference on Microelectronics, pp. 978-982, May 2008.
[118] S. B. Riffat and X. Ma, "Thermoelectrics a review of present and potential applications," Applied Thermal Engineering, vol. 23, pp. 913- 935, 2003.
[119] G. Brumfiel, "Curiosity's dirty little secret," Slate, 2012. http://www.slate.com/articles/health_and_science/science/2012/08/mars_rover_curiosity_its_plutonium_ power_comes_courtesy_of_soviet_nukes_.html.
[120] "Radioisotope power systems, power and thermal systems." https://rps.nasa.gov/power-and-thermal-systems/power-systems/current/. Date accessed 6-10-18.
[121] B. C. Sales, B. C. Chakoumakos, and D. Mandrus, "Thermoelectric properties of thallium-filled skutterudites," Physical Review B, vol. 61, pp. 2475-2481, Jan. 2000.
[122] A. Watcharapsorn, R. S. Feigelson, T. Caillat, A. Borshchevsky, G. Snyder, and J.-P. Fleurial, "Preparation and thermoelectric properties of CeFe4As12," Journal of Applied Physics, vol. 91, no. 3, pp. 1344-1348, 2002.
[123] "Apple product information sheet." https://images.apple.com/legal/more-resources/docs/apple-product-information-sheet.pdf, 2018. Date accessed 6-10-18.
[124] https://www.apple.com/iphone-x/specs/. Date accessed 6-10-18.
[125] D. Wright, "Request for issuance of certificate of conformity." https://iaspub.epa.gov/otaqpub/displ...ile.jsp?docid=39828&flag=1, 2016. The curb mass of the 2017 Tesla Model S AWD 90D is 2172 kg, and the weight of its battery is 580 kg.
[126] E. F. Kaye, "Chairman's hoverboard press statement." https://www.cpsc.gov/about-cpsc/chai...elliot-f-kaye/statements/chairmans-hoverboard-press-statement/, 2016.
[127] J. McCurry, "Samsung blames two separate battery faults for Galaxy Note 7 fires," The Guardian, Jan. 2017.
[128] T. Reddy, Linden's Handbook of Batteries, 4 ed. McGraw Hill, 2010.
[129] https://www.tesla.com/gigafactory. Date accessed 6-10-18.
[130] R. S. Mulliken, "A new electroaffinity scale, together with data on valence states and on valence ionization potentials and electron affinities," Journal of Chemical Physics, vol. 2, pp. 782-793, Nov. 1934.
[131] R. G. Pearson, "Absolute electronegativity and hardness: application to inorganic chemistry," Inorganic Chemistry, vol. 27, pp. 734-740, 1988.
[132] H. O. Pritchard and F. H. Sumner, "The application of electronic digital computers to molecular orbital problems II. A new approximation for hetero-atom systems," Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, vol. 235, pp. 136-143, Apr. 1956.
[133] R. P. Iczkowski and J. L. Margrave, "Electronegativity," Journal of the American Chemical Society, vol. 83, pp. 3547-3553, Sept. 1961.
[134] L. Pauling, "The nature of the chemical bond IV. The energy of single bonds and the relative electronegativity of atoms," Journal of the American Chemical Society, vol. 54, pp. 3570-3583, 1932.
[135] W. Gordy, "A new method of determining electronegativity from other atomic properties," Physical Review, vol. 69, pp. 604-607, June 1946.
[136] R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989.
[137] S. G. Bratsch, "Standard electrode potentials and temperature coefficients in water at 298.15 K," Journal of Physical Chemical Reference Data, vol. 18, pp. 1-21, 1989. http://www.nist.gov/srd/upload/jpcrd355.pdf.
[138] R. Shapiro, "Oxidation-reduction potential," Water and Sewage Works, vol. 101, pp. 185-188, Apr. 1954.
[139] C. E. Wallace. https://www.youtube.com/watch?v=RAFcZo8dTcU. Date accessed 6-1-18.
[140] C. K. Morehouse, R. Glicksman, and G. S. Lozier, "Batteries," Proceedings of the IRE, pp. 1462-1483, 1958.
[141] https://www.energy.gov/eere/fuelcells/fuel-cell-animation. Date accessed 6-1-18.
[142] "Overview of battery technologies for MEMS applications," MEMS Journal, 2011. http://www.memsjournal.com/2011/02/overview-of-battery-technologies-for-mems-applications-.html.
[143] http://www.frontedgetechnology.com/gen.htm. Date accessed 6- 1-18.
[144] "Polaroid p100 polapulse/powerburst battery." http://users.rcn.com/fcohen/P100.htm. Date accessed 6-1-18.
[145] http://en.wikipedia.org/wiki/Instant_film. Date accessed 6- 1-18.
[146] "Energizer nickel metal hydride handbook and application manual," 2001.
[147] "Energizer nickel metal hydride handbook and application manual." http://data.energizer.com/PDFs/nickelmetalhydride_appman.pdf, 2010.
[148] P. J. Dalton, "International space station nickel hydrogen batteries approach 3 year on orbit mark." https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050215412.pdf. Date accessed 6-10- 18.
[149] http://www.eaglepicher.com/ips-2/medical-power-technology. Date accessed 6-1-18.
[150] J. P. Owejan, T. A. Trabold, D. L. Jacobson, M. Arif, and S. G. Kandlikar, "Effects of flow field diffusion layer properties on water accumulation in a pem fuel cell," International Journal of Hydrogen Energy, vol. 32, pp. 4489-4502, 2007.
[151] S. O. Farwell, D. R. Gage, and R. A. Kagel, "Current status of prominent selective gas chromatographic detectors: a critical assessment," Journal of Chromatographic Science, vol. 19, 1981.
[152] "Background on smoke detectors." https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/smoke-detectors.html. Date accessed 6-1-18.
[153] http://www.landauer.com/Industry/Products/Dosimeters/Dosimeters.aspx. Date accessed 6-1-18.
[154] http://www.perkinelmer.co.uk/product/tri-carb-4910tr-110-v-a491000. Date accessed 6-1-18.
[155] C. D. F. Massaad, T. M. Lejeune, "The up and down bobbing of human walking," Journal of Physiology, vol. 582, pp. 789-799, 2007.
[156] A. J. Bur, "Measurements of the dynamic piezoelectric properties of bone as a function of temperature and humidity," Journal of Biomechanics, vol. 9, pp. 495-507, 1976.
[157] T. J. Anastasio, Tutorial on Neural System Modeling. Sinauer, 2009.
[158] "The principles of nerve cell communication," Alcohol Health and Research World, vol. 21, pp. 107-108, 1997. https://pubs.niaaa.nih.gov/publications/arh21-2/107.pdf.
[159] H. A. Stone, A. D. Stroock, and A. Ajdari, "Engineering flows in small devices: Microfluidics towards a lab-on-a-chip," Annual Review of Fluid Mechanics, vol. 36, pp. 381-411, 2004.
[160] P. Gravesen, J. Branebjerg, and O. S. Jensen, "Microfluidics - a review," Journal of Micromechanical Microengineering, vol. 3, pp. 168- 182, 2004.
[161] P. K. Wong, T. Wang, J. H. Deval, and C. Ho, "Electrokinetics in micro devices for biotechnology applications," IEEE ASME Transactions on Mechatronics, vol. 9, pp. 366-377, June 2004.
[162] A. Tipler, Physics, 3 ed., Vol. 1. Worth Publishing, 1991.
[163] B. V. Brunt, The Calculus of Variations. Springer, 2002.
[164] P. J. Olver, Applications of Lie Groups To Differential Equations. New York: Springer, 1986.
[165] E. Noether, "Invariant variation problems," Transport Theory and Statistical Physics, vol. 1, no. 3, pp. 183-207, 1971. English Translation.
[166] E. Noether, "Invariant variation problems," Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse, vol. 235, 1918.
[167] V. I. Arnol'd, Mathematical Methods of Classical Mechanics, 2 ed. Springer, 2010.
[168] C. L. Nachtigal and M. D. Martin, Instrumentation and Control. Wiley, 1990.
[169] http://hyperphysics.phy-astr.gsu.edu...ic/watcir.html. Date accessed 6-1-18.
[170] P. Salamon, B. Andresen, and R. S. Berry, "Thermodynamics in finite time. II potentials for finite-time processes", Physical Review A, vol. 15, no. 5, 1977.
[171] P. Salamon, B. Andresen, and R. S. Berry, "Minimum entropy production and the optimization of heat engines," Physical Review A, vol. 21, no. 6, 1980.
[172] R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, "Electronegativity: the density functional viewpoint," Journal of Chemical Physics, vol. 68, pp. 3801-3808, Apr. 1978.
[173] Thomas, "The calculation of atomic fields," Proceedings of the Cambridge Philosophical Society, vol. 23, pp. 542-548, 1927.
[174] E. Fermi, Collected Papers, Vol. 1. Chicago: University of Chicago Press, 1962. See the article "Über die Anwendung der statistischen Methode auf die probleme des Atombaues, " 1928, the article "Un metodo statistico per la determinazione di alcune proprieta dell'atome," 1927, and the article "Zur Quantelung des ideal eneinatomigen gases," 1926.
[175] G. K. Woodgate, Elementary Atomic Structure, 2nd ed. Oxford, 1980.
[176] S. J. A. Malham, An Introduction to Lagrangian Mechanics, Lecture Notes. 2016. http://www.macs.hw.ac.uk/~simonm/mechanics.pdf.
[177] E. Fermi, "Un metodo statistico per la determinazione di alcune prioreta dell'atome," Rendicondi Accademia Nazionale de Lincei, vol. 6, no. 32, pp. 602-607, 1927.
[178] http://www.abinit.org/. Date accessed 6-1-18.
[179] http://departments.icmab.es/leem/siesta/. Date accessed 6-1-18.
[180] H. Krutter, "Numerical integration of the Thomas-Fermi equation from zero to infinity," Journal of Computational Physics, vol. 47, pp. 308-312, 1982.
[181] N. H. Ibragimov, Lie Group Analysis of Differential Equations, Vol. 3. CRC press, 1996.
[182] L. Gagnon and P. Winternitz, "Lie symmetries of a generalized non-linear Schrödinger equation: I. the symmetry group and its sub-groups," Journal of Physics A, vol. 21, pp. 1493-1511, 1988.
[183] E. G. Kalnins and W. Miller, "Lie theory and separation of variables 5," Journal of Mathematical Physics, vol. 15, pp. 1728-1738, 1974.
[184] V. I. Fushchich and A. G. Nikitin, "New and old symmetries of the Maxwell and Dirac equations," Soviet Journal of Particles and Nuclei, vol. 14, pp. 122, Jan. 1983.
[185] W. I. Fushchich and A. G. Nikitin, Symmetries of Maxwell's Equations. Boston, MA: D. Reidel Publishing, 1987.
[186] A. R. Chowdhury and P. K. Chanda, "On the Lie symmetry approach to small's equation of nonlinear optics," Journal of Physics A, vol. 18, pp. 117-121, 1985.
[187] J. J. Sakurai, Modern Quantum Mechanics. Massachusetts: Addison-Wesley Publishing Company, 1994.
[188] M. Lutzky, "Dynamical symmetries and conserved quantities," Journal of Physics A, vol. 12, no. 7, pp. 973-981, 1979.
[189] L. V. Ovsiannikov, Group Analysis of Differential Equations. New York, NY: Academic Press, 1982.
[190] P. G. L. Leach, R. Maartens, and S. D. Maharaj, "Self similar solutions of the generalized Emden Fowler equation," International Journal of Nonlinear Mechanics, vol. 27, pp. 575-582, 1992.
[191] R. L. Anderson and S. M. Davison, "A generalization of Lie's counting theorem for second order ordinary differential equations," Journal of Mathematical Analysis and Applications, vol. 48, pp. 301-315, 1974.
[192] E. A. Desloge and R. I. Karch, "Noether's theorem in classical mechanics," American Journal of Physics, vol. 45, pp. 336-339, Apr. 1977.
[193] http://www.nist.gov/pml/wmd/metric/prefixes.cfm. Date accessed 6-1-18.
[194] R. P. Feynman, Feynman Lectures on Physics. MA: Addison Wesley Publishing Company, 1963.
[195] F. R. Whitt and D. G. Wilson, Bicycling Science. MIT, 1974.
[196] R. S. Shallenberger, Sugar Chemistry. Connecticut: Avi Publishing Company, 1975.