Skip to main content
Engineering LibreTexts

Introduction

  • Page ID
    37566
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Welcome to the AC Electrical Circuit Analysis, an open educational resource (OER). The goal of this text is to introduce the theory and practical application of analysis of AC electrical circuits. It assumes familiarity with DC circuit analysis. If you have not studied DC circuit analysis, it is strongly recommended that you read the companion OER text, DC Electrical Circuit Analysis before continuing. Both texts are offered free of charge under a Creative Commons non-commercial, share-alike with attribution license. For your convenience, along with the free pdf and odt files, print copies are available at a very modest charge. Check my web sites for links.

    This text is based on the earlier Workbook for AC Electrical Circuits, which it replaces. The original expository text has been greatly expanded and includes many examples along with computer simulations. For the convenience of those who used the Workbook, many of the problem sets are the same, with some re-ordering depending on the chapter.

    If you are already familiar with DC Electrical Circuit Analysis, the format of this title is similar. This text picks up where the DC text leaves off; beginning with AC concepts such as sinusoidal waveforms, basic Fourier decomposition of complex waveforms, complex numbers and the like. Also, reactance and impedance are introduced along with phasor diagrams. Chapters on series, parallel and series-parallel RLC circuits commence. Following these, network theorems along with nodal and mesh analysis are discussed for the AC case. The text completes with chapters on AC power, resonance, and introductions to polyphase systems and magnetic circuits. Each chapter begins with a set of learning objectives and concludes with practice exercises that are generally divided into four major types: analysis, design, challenge and simulation. Many SPICE-based circuit simulators are available, both free and commercial, that can be used with this text. The answers to most odd-numbered exercises can be found in the Appendix. A table of standard resistor sizes is also in the Appendix, which is useful for real-world design problems. If you have any questions regarding this workbook, or are interested in contributing to the project, do not hesitate to contact me.

    This text is part of a series of OER titles in the areas of electricity, electronics, audio and computer programming. It includes three other textbooks covering semiconductor devices, operational amplifiers, and embedded programming using the C language with the Arduino platform. There is a text covering DC electrical circuits similar to this one, and also seven laboratory manuals; one for each of the five texts plus individual titles covering computer programming using the Python language, and the science of sound. The most recent versions of all of my OER texts and manuals may be found at my MVCC web site as well as my mirror site: www.dissidents.com

    This text was created using several free and open software applications including Open Office, Dia, and XnView.

    Special thanks to the following individuals for their efforts in reviewing and proofreading the DC and AC Electrical Circuit Analysis texts: Glenn Ballard, John Markham, João Nuno Carvalho, Mark Steffka and Jim Noon.

    • Was this article helpful?