Skip to main content
Engineering LibreTexts

7.8: Exercises

  • Page ID
    34248
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Unless otherwise specified, use \(\beta = 100\).

    7.8.1: Analysis Problems

    1. Determine the input and output impedances of the circuit of Figure \(\PageIndex{1}\).

    clipboard_e7489ccdcf6b0efe42b190896afb665b3.png

    Figure \(\PageIndex{1}\)

    2. Determine the load voltage for the circuit of Figure \(\PageIndex{1}\) if \(V_{in}\) is 10 mV.

    3. Determine \(Z_{in}\), \(Z_{out}\), and the load voltage for the circuit of Figure \(\PageIndex{2}\) if \(V_{in}\) is 70 mV.

    clipboard_e08588dc0e090b2342d0ffe58a9f7baa2.png

    Figure \(\PageIndex{2}\)

    4. Determine \(Z_{in}\), \(Z_{out}\), and the load voltage for the circuit of Figure \(\PageIndex{3}\) if \(V_{in}\) is 50 mV.

    clipboard_e51c9323826cce7a14130334666402415.png

    Figure \(\PageIndex{3}\)

    5. Determine \(Z_{in}\), \(Z_{out}\), and the load voltage for the circuit of Figure \(\PageIndex{4}\) if \(V_{in}\) is 25 mV.

    clipboard_e9e202383fda15823bf1ddd3bf4fe602a.png

    Figure \(\PageIndex{4}\)

    6. Determine \(Z_{in}\), \(Z_{out}\), and the load voltage for the circuit of Figure \(\PageIndex{5}\) if \(V_{in}\) is 30 mV.

    clipboard_e2a6c1e1e02b4436a2b70c6360c334196.png

    Figure \(\PageIndex{5}\)

    7. Determine \(Z_{in}\), \(Z_{out}\), and the load voltage for the circuit of Figure \(\PageIndex{6}\) if \(V_{in}\) is 60 mV.

    clipboard_e6613c7a912210166ce239756e1e951c2.png

    Figure \(\PageIndex{6}\)

    8. Determine \(Z_{in}\), \(Z_{out}\), and the load voltage for the circuit of Figure \(\PageIndex{7}\) if \(V_{in}\) is 150 mV.

    clipboard_eb7ad222c231eba07dfec459e0605f537.png

    Figure \(\PageIndex{7}\)

    9. Determine \(Z_{in}\), \(Z_{out}\), and the load voltage for the circuit of Figure \(\PageIndex{8}\) if \(V_{in}\) is 200 mV.

    clipboard_e1169e9a4f86b8186186067abb37c1ce9.png

    Figure \(\PageIndex{8}\)

    10. Determine \(Z_{in}\), \(Z_{out}\), and the load voltage for the circuit of Figure \(\PageIndex{9}\) if \(V_{in}\) is 250 mV.

    clipboard_e2fc3a3c502ed91a31491a8b0b0029f0d.png

    Figure \(\PageIndex{9}\)

    11. Determine \(Z_{in}\), \(Z_{out}\), and the load voltage for the circuit of Figure \(\PageIndex{10}\) if \(V_{in}\) is 300 mV.

    clipboard_e8102f479db8e298f01d007abfbe87d0c.png

    Figure \(\PageIndex{10}\)

    12. Determine \(Z_{in}\), \(Z_{out}\), and the load voltage for the circuit of Figure \(\PageIndex{11}\) if \(V_{in}\) is 50 mV.

    clipboard_e3ded4d5b71ed948841db1771ef358504.png

    Figure \(\PageIndex{11}\)

    13. Determine \(Z_{in}\), \(Z_{out}\), and the load voltage for the circuit of Figure \(\PageIndex{12}\) if \(V_{in}\) is 2 mV.

    clipboard_e7f0a6db84e8ead161829853df718f271.png

    Figure \(\PageIndex{12}\)

    7.8.2: Design Problems

    14. Redesign the circuit of Figure \(\PageIndex{2}\) to halve the existing gain while keeping the Q point where it is currently.

    15. By using a Darlington pair, redesign the circuit of Figure \(\PageIndex{3}\) to double \(Z_{in}\).

    16. Redesign the circuit of Figure \(\PageIndex{3}\) so that it exhibits the same performance parameters but uses a PNP device.

    17. Redesign the circuit of Figure \(\PageIndex{5}\) to double the existing gain while keeping the Q point where it is currently.

    18. Redesign the circuit of Figure \(\PageIndex{7}\) so that it exhibits the same performance parameters but uses an NPN device.

    7.8.3: Challenge Problems

    19. Determine the gain and input impedance for the circuit of Figure \(\PageIndex{13}\). \(V_{CC}\) = 20 V, \(V_{EE}\) = −10 V, \(R_B\) = 18 k\(\Omega\), \(R_{E1}\)= 10 k\(\Omega\), \(R_{C1}\) = 12 k\(\Omega\), \(R_1\) = 33 k\(\Omega\), \(R_2\) = 15 k\(\Omega\), \(R_{E2}\) = 5.6 k\(\Omega\), \(R_{SW}\) = 400 k\(\Omega\), \(R_{C2}\) = 6.8 k\(\Omega\), \(R_L\) = 24 k\(\Omega\).

    clipboard_e37c63a9f3e31c5ce006eb66d5141777e.png

    Figure \(\PageIndex{13}\)

    20. For the circuit of Figure \(\PageIndex{10}\), replace its load resistor with the circuit of Figure \(\PageIndex{6}\) and determine the combined gain and input impedance of the system.

    7.8.4: Computer Simulation Problems

    21. Use a transient analysis to verify the load voltage of problem 3.

    22. Use a transient analysis to verify the load voltage of problem 4.

    23. Use a transient analysis to verify the load voltage of problem 8.

    24. Consider the amplifier of Figure \(\PageIndex{1}\). Replace the 4.3 k\(\Omega\) emitter resistor with a potentiometer of the same value. Connect the wiper arm to the emitter bypass capacitor. Run several transient analyses at different pot settings (0%, 25%, 50%, etc.). What can you conclude from the results?


    This page titled 7.8: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?