Skip to main content
Engineering LibreTexts

12.8: Exercises

  • Page ID
    34254
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    12.8.1: Analysis Problems

    1. For the circuit of Figure \(\PageIndex{1}\), determine \(I_D\), \(V_G\) and \(V_D\). \(I_{DSS}\) = 20 mA, \(V_{GS(off)}\) = −6 V, \(V_{DD}\) = 15 V, \(R_G\) = 470 k\(\Omega\), \(R_S\) = 1.2 k\(\Omega\), \(R_D\) = 1.8 k\(\Omega\).

    2. For the circuit of Figure \(\PageIndex{1}\), determine \(I_D\), \(V_{DS}\) and \(V_D\). \(I_{DSS}\) = 20 mA, \(V_{GS(off)}\) = −5 V, \(V_{DD}\) = 30 V, \(R_G\) = 560 k\(\Omega\), \(R_S\) = 420 \(\Omega\), \(R_D\) = 1.5 k\(\Omega\).

    clipboard_ef04a1ea6d7148bc7cdd3235ff41c0831.png

    Figure \(\PageIndex{1}\)

    3. For Figure \(\PageIndex{2}\), determine \(I_D\), \(V_G\) and \(V_D\). \(I_{DSS}\) = 15 mA, \(V_{DD}\) = 25 V, \(V_{GS(off)}\) = −3 V, \(V_{SS}\) = −6 V, \(R_G\) = 820 k\(\Omega\), \(R_S\) = 2 k\(\Omega\), \(R_D\) = 3.6 k\(\Omega\).

    4. For the circuit of Figure \(\PageIndex{2}\), determine \(I_D\), \(V_{DS}\) and \(V_D\). \(I_{DSS}\) = 18 mA, \(V_{GS(off)}\) = −3 V, \(V_{DD}\) = 30 V, \(V_{SS}\) = −9 V, \(R_G\) = 910 k\(\Omega\), \(R_S\) = 1.2 k\(\Omega\), \(R_D\) = 2.7 k\(\Omega\).

    5. For the circuit of Figure \(\PageIndex{3}\), determine \(I_D\), \(V_G\) and \(V_D\). \(I_{DSS}\) = 12 mA, \(V_{GS(off)}\) = −4 V, \(V_{DD}\) = 35 V, \(R_G\) = 680 k\(\Omega\), \(R_D\) = 1.8 k\(\Omega\).

    clipboard_e7e653f087e688296b5c82a60d69da92a.png

    Figure \(\PageIndex{2}\)

    6. For the circuit of Figure \(\PageIndex{3}\), determine \(I_D\), \(V_{DS}\) and \(V_D\). \(I_{DSS}\) = 8 mA, \(V_{GS(off)}\) = −2 V, \(V_{DD}\) = 30 V, \(R_G\) = 750 k\(\Omega\), \(R_D\) = 2.7 k\(\Omega\).

    clipboard_ef8cdebc69c90b78656fa999070ba5e8a.png

    Figure \(\PageIndex{3}\)

    7. For the circuit of Figure \(\PageIndex{4}\), determine \(I_D\), \(V_G\) and \(V_D\). \(I_{DSS}\) = 8 mA, \(V_{GS(off)}\) = −4 V, \(V_{DD}\) = 30 V, \(R_1\) = 2.7 M\(\Omega\), \(R_2\) = 110 k\(\Omega\), \(R_D\) = 470 \(\Omega\).

    8. For the circuit of Figure \(\PageIndex{4}\), determine \(I_D\), \(V_{DS}\) and \(V_D\). \(I_{DSS}\) = 12 mA, \(V_{GS(off)}\) = −6 V, \(V_{DD}\) = 20 V, \(R_1\) = 2 M\(\Omega\), \(R_2\) = 100 k\(\Omega\), \(R_D\) = 680 \(\Omega\).

    9. For the circuit of Figure \(\PageIndex{5}\), determine \(I_D\), \(V_G\) and \(V_D\). \(I_{D(on)}\) = 8 mA, \(V_{GS(on)}\) = 5 V, \(V_{GS(th)}\) = 3 V, \(V_{DD}\) = 30 V, \(R_1\) = 2 M\(\Omega\), \(R_2\) = 330 k\(\Omega\), \(R_D\) = 1.2 k\(\Omega\).

    10. For the circuit of Figure \(\PageIndex{5}\), determine \(I_D\), \(V_{DS}\) and \(V_D\). \(I_{D(on)}\) = 12 mA, \(V_{GS(on)}\) = 6 V, \(V_{GS(th)}\) = 2.5 V, \(V_{DD}\) = 25 V, \(R_1\) = 1.5 M\(\Omega\), \(R_2\) = 470 k\(\Omega\), \(R_D\) = 680 \(\Omega\).

    clipboard_e1ab231c094c341a90f446eda3d4beee9.png

    Figure \(\PageIndex{4}\)

    clipboard_e00c54618144cf86e17117123807b409c.png

    Figure \(\PageIndex{5}\)

    11. For the circuit of Figure \(\PageIndex{6}\), determine \(I_D\), \(V_G\) and \(V_D\). \(I_{DSS}\) = 12 mA, \(V_{GS(off)}\) = 2 V, \(V_{DD}\) = −25 V, \(R_G\) = 470 k\(\Omega\), \(R_S\) = 800 \(\Omega\), \(R_D\) = 1.8 k\(\Omega\).

    12. For the circuit of Figure \(\PageIndex{6}\), determine \(I_D\) and \(V_D\). \(I_{DSS}\) = 10 mA, \(V_{GS(off)}\) = 2 V, \(V_{DD}\) = −20 V, \(R_G\) = 560 k\(\Omega\), \(R_S\) = 680 \(\Omega\), \(R_D\) = 1.5 k\(\Omega\).

    clipboard_e404bdc60939556764baee24b8f1c2b99.png

    Figure \(\PageIndex{6}\)

    13. For the circuit of Figure \(\PageIndex{7}\), determine \(I_D\), \(V_G\) and \(V_D\). \(I_{DSS}\) = 14 mA, \(V_{GS(off)}\) = 3 V, \(V_{DD}\) = −25 V, \(V_{SS}\) = 6 V, \(R_G\) = 780 k\(\Omega\), \(R_S\) = 2 k\(\Omega\), \(R_D\) = 3.3 k\(\Omega\).

    clipboard_e0a0a74369dbe30d3847e1ac332205d57.png

    Figure \(\PageIndex{7}\)

    14. For the circuit of Figure \(\PageIndex{7}\), determine \(I_D\) and \(V_D\). \(I_{DSS}\) = 16 mA, \(V_{GS(off)}\) = 3.5 V, \(V_{DD}\) = −20 V, \(V_{SS}\) = 7 V, \(R_G\) = 1 M\(\Omega\), \(R_S\) = 1.5 k\(\Omega\), \(R_D\) = 2.2 k\(\Omega\).

    15. For the circuit of Figure \(\PageIndex{8}\), determine \(I_D\) and \(V_D\). \(I_{DSS}\) = 11 mA, \(V_{GS(off)}\) = 2 V, \(V_{DD}\) = −24 V, \(R_G\) = 750 k\(\Omega\), \(R_D\) = 1.2 k\(\Omega\).

    16. For the circuit of Figure \(\PageIndex{8}\), determine \(I_D\) and \(V_D\). \(I_{DSS}\) = 9 mA, \(V_{GS(off)}\) = 3 V, \(V_{DD}\) = −18 V, \(R_G\) = 430 k\(\Omega\), \(R_D\) = 910 \(\Omega\).

    clipboard_e85658a4b1d284fa362faef089e03cf9a.png

    Figure \(\PageIndex{8}\)

    12.8.2: Design Problems

    17. Using the circuit of Figure \(\PageIndex{1}\), determine a value for \(R_S\) to set \(I_D\) to 4 mA. \(I_{DSS}\) = 10 mA, \(V_{GS(off)}\) = −2 V, \(V_{DD}\) = 18 V, \(R_G\) = 470 k\(\Omega\), \(R_D\) = 1.5 k\(\Omega\).

    clipboard_e67ef9a801713032d3a42068bd0d58e1e.png

    Figure \(\PageIndex{9}\)

    18. For the circuit of Figure \(\PageIndex{9}\), determine \(R_D\) and \(R_G\) to set \(I_D\) = 10 mA. \(I_{D(on)}\) = 15 mA, \(V_{GS(on)}\) = 6 V, \(V_{GS(th)}\) = 2 V, \(V_{DD}\) = 20 V.

    19. For the circuit of Figure \(\PageIndex{9}\), determine \(R_D\) and \(R_G\) to set \(I_D\) = 15 mA. \(I_{D(on)}\) = 10 mA, \(V_{GS(on)}\) = 5 V, \(V_{GS(th)}\) = 2 V, \(V_{DD}\) = 25 V.

    12.8.3: Challenge Problems

    20. Using the circuit of Figure \(\PageIndex{2}\), determine values for \(R_D\), \(R_S\) and \(V_{SS}\) to set \(I_D\) to 5 mA and \(V_D\) to 20 V. \(I_{DSS}\) = 15 mA, \(V_{GS(off)}\) = −3 V, \(V_{DD}\) = 30 V, \(R_G\) = 560 k\(\Omega\).

    21. Using the circuit of Figure \(\PageIndex{10}\), determine values for \(R_D\) to set \(V_D\) to 15 V. \(I_{DSS}\) = 10 mA, \(V_{GS(off)}\) = 3 V, \(V_{SS}\) = 25 V, \(R_G\) = 680 k\(\Omega\).

    clipboard_e394f26e9772ff9cdd12658ab44c1e99a.png

    Figure \(\PageIndex{10}\)

    clipboard_e94021a17456dcd38ba0d4851829e6cbf.png

    Figure \(\PageIndex{11}\): Comic courtesy of xkcd.com


    This page titled 12.8: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.