Skip to main content
Engineering LibreTexts

4.11: References

  • Page ID
    46115
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    [1] H. Nyquist, “Thermal agitation of electric charge in conductors,” Physical review, vol. 32, no. 1, p. 110, 1928.

    [2] D. Chandler, Introduction to modern statistical mechanics. Oxford University Press, 1987.

    [3] M. Steer, Microwave and RF Design, Transmission Lines, 3rd ed. North Carolina State University, 2019.

    [4] H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev., vol. 32, p. 110, 1928.

    [5] D. Middleton, An Introduction to Statistical Communication Theory. IEEE Press, 1996.

    [6] M. Gupta, “Thermal noise in nonlinear resistive devices and its circuit representation,” Proc. of the IEEE, vol. 70, no. 8, pp. 788–804, Aug. 1982.

    [7] A. Hati, D. Howe, F. Walls, and D. Walker, “Merits of pm noise measurement over noise figure: a study at microwave frequencies,” IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, vol. 53, no. 10, pp. 1889– 1894, Oct. 2006.

    [8] H. Hartnagel, R. Katilius, and A. Matulionis, Microwave Noise in Semiconductor Devices. Wiley, 2001.

    [9] R. Sarpeshkar, T. Delbruck, and C. Mead, “White noise in mos transistors and resistors,” IEEE Circuits and Devices Magazine, vol. 9, no. 6, pp. 23–29, Nov. 1993.

    [10] A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic Processes. McGrawHill, 1994.

    [11] Y. M. Blanter and M. B ¨uttiker, “Shot noise in mesoscopic conductors,” Physics Reports, vol. 336, no. 1/2, pp. 1–166, Sep. 2000.

    [12] H. Haus, W. Atkinson, G. Branch, W. Davenport, W. Fonger, W. Harris, S. Harrison, W. McLeod, E. Stodola, and T. Talpey, “Representation of noise in linear twoports,” Proc. of the IRE, vol. 48, no. 1, pp. 69–74, Jan. 1960.

    [13] H. Friis, “Noise figures of radio receivers,” Proc. of the IRE, vol. 32, no. 7, pp. 419–422, Jul. 1944.

    [14] W. Mumford and E. Scheibe, Noise Performance Factors in Communication Systems. Horizon House, 1968.

    [15] “Noise figure measurement accuracy-the yfactor method,” Agilent Technologies, application Note 57-2.

    [16] A. Victor and M. Steer, “Improved y factor noise measurement using the second stage contribution to advantage,” in 65th ARFTG Conf. Digest, Spring 2005, Jun. 2005, p. 3.

    [17] QORVO, “FPD6836P70 data sheet, low noise high frequency packaged enhancement mode phemt transistor,” http://www.qorvo.com.

    [18] “IEEE Standard 1139-2008, Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology—Random Instabilities,” IEEE, Feb. 2009.

    [19] B. Mandelbrot and J. Van Ness, “Fractional brownian motions, fractional noises and applications,” SIAM Review, vol. 10, no. 4, pp. 422–437, 1968.

    [20] G. Wornell, “Wavelet-based representations for the 1/f family of fractal processes,” Proc. of the IEEE, vol. 81, no. 10, pp. 1428–1450, Oct. 1993.

    [21] G. Wornell and A. Oppenheim, Signal Processing with Fractals: A Wavelet-Based Approach. Prentice Hall, 1996.

    [22] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. of the IEEE, vol. 54, no. 2, pp. 329–330, Feb. 1966.

    [23] A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. of Solid-State Circuits, vol. 33, no. 2, pp. 179– 194, Feb. 1998.

    [24] W. Pastori, “Effects of DUT mismatch on the noise figure characterization: a comparative analysis of two Y-factor techniques,” Microwave Journal, vol. 26, no. 4, pp. 50–60, Apr. 1983.

    [25] J.-M. Collantes, R. D. Pollard, and M. Sayed, “Effects of dut mismatch on the noise figure characterization: a comparative analysis of two Y-factor techniques,” IEEE Trans. on Instrumentation and Measurement, vol. 51, no. 6, pp. 1150–1156, Dec. 2002.

    [26] U. Rohde and J. Whitake, Communications Receivers. McGraw Hill, 2001.

    [27] J. Pedro and C. N.B., Intermodulation Distortion in Microwave and Wireless Circuits. Norwood, MA, USA: Artech House, Inc., 2003.

    [28] J. Sevic and M. Steer, “On the significance of envelope peak-to-average ratio for estimating the spectral regrowth of an RF/microwave power amplifier,” IEEE Trans. on Microwave Theory and Techniques, vol. 48, no. 6, pp. 1068–1071, 2000.

    [29] N. de Carvalho and J. Pedro, “A comprehensive explanation of distortion sideband asymmetries,” IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 9, pp. 2090– 2101, Sep. 2002.

    [30] A. Walker, M. Steer, and K. Gard, “Capturing asymmetry in distortion of an RF system using a multislice behavioral model,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 4, pp. 212–214, 2006.

    [31] W. Jang, A. Walker, K. Gard, and M. Steer, “Capturing asymmetrical spectral regrowth in RF systems using a multi-slice behavioral model and enhanced envelop transient analysis,” Int. Journal of RF and Microwave Computer-Aided Engineering, vol. 16, no. 4, pp. 400–407, 2006.

    [32] W. Jang, N. Kriplani, and M. Steer, “Behavioural modelling of amplifier asymmetry in the time domain,” Int. Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2012.

    [33] M. Amin and F. Benson, “Coaxial cables as sources of intermodulation interference at microwave frequencies,” IEEE Trans. on Electromagnetic Compatibility, vol. EMC-20, no. 3, pp. 376–384, Aug. 1978.

    [34] M. Amin and I. Benson, “Nonlinear effects in coaxial cables at microwave frequencies,” Electronics Letters, vol. 13, no. 25, pp. 768–770, 8 1977.

    [35] J. Wilkerson, P. Lam, K. Gard, and M. Steer, “Distributed passive intermodulation distortion on transmission lines,” IEEE Trans. on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1190–1205, May 2011.

    [36] J. Wilkerson, K. Gard, and M. Steer, “Electrothermal passive intermodulation distortion in microwave attenuators,” in 36th European Microwave Conf., Sep. 2006, pp. 157–160.

    [37] J. Wilkerson, K. Gard, A. Schuchinsky, and M. Steer, “Electro-thermal theory of intermodulation distortion in lossy microwave components,” IEEE Trans. on Microwave Theory and Techniques, vol. 56, no. 12, pp. 2717– 2725, Dec. 2008.

    [38] J. Wilkerson, K. Gard, and M. Steer, “Automated broadband high-dynamic-range nonlinear distortion measurement system,” IEEE Trans. on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1273–1282, may 2010.

    [39] C. Vicente and H. Hartnagel, “Passive-intermodulation analysis between rough rectangular waveguide flanges,” IEEE Trans. on Microwave Theory and Techniques, vol. 53, no. 8, pp. 2515–2525, Aug. 2005.

    [40] C. Vicente, D. Wolk, H. Hartnagel, and D. Raboso, “An experimental investigation on passive intermodulation at rectangular waveguide interfaces,” in 2006 IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2006, pp. 242–245.

    [41] G. Mazzaro, M. Steer, and K. Gard, “Intermodulation distortion in narrowband amplifier circuits,” IET Microwaves, Antennas Propagation, vol. 4, no. 9, pp. 1149–1156, Sep. 2010.

    [42] G. Mazzaro, M. Steer, K. Gard, and A. Walker, “Response of RF networks to transient waveforms: Interference in frequency-hopped communications,” IEEE Trans. on Microwave Theory and Techniques, vol. 56, no. 12, pp. 2808–2814, Dec. 2008.

    [43] J. Wetherington and M. Steer, “Robust analog canceller for high-dynamic-range radio frequency measurement,” IEEE Trans. on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1709–1719, Jun. 2012.

    [44] A. Christianson and W. Chappell, “Measurement of ultra low passive intermodulation with ability to separate current/voltage induced nonlinearities,” in 2009 IEEE MTTS Int. Microwave Symp. Dig., Jun. 2009, pp. 1301–1304.

    [45] J. Russer, A. Ramachandran, A. Cangellaris, and P. Russer, “Phenomenological modeling of passive intermodulation (PIM) due to electron tunneling at metallic contacts,” in 2006 IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2006, pp. 1129–1132.

    [46] J. Simmons, “Generalized thermal j-v characteristic for the electric tunnel effect,” Applied Physics, vol. 35, no. 9, pp. 2655–2658, Sep. 1964.

    [47] J. Henrie, A. Christianson, and W. Chappell, “Engineered passive nonlinearities for broadband passive intermodulation distortion mitigation,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 614– 616, Oct. 2009.

    [48] J. Wetherington and M. Steer, “Standoff acoustic modulation of radio frequency signals in a log-periodic dipole array antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 11, no. 8, p. 1, Aug. 2012.

    [49] A. Hati, C. Nelson, and D. Howe, “Effect of vibration on P and AM noise of oscillatory and non-oscillatory components at 10 GHz,” in 2009 IEEE Int. Frequency Control Symp., Joint with the 22nd European Frequency and Time Forum, Apr. 2009, pp. 524–529.

    [50] “E-20-01A: ECCS Standard on Multipaction and Test,” http://www.ecss.nl.


    4.11: References is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?