Skip to main content
Engineering LibreTexts

1.2: Discrete-Time Systems

  • Page ID
    126928
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives: Discrete-Time System

    1. Translate verbal descriptions of systems into equations.
    2. Demonstrate whether systems satisfy the properties of linearity, time-invariance, causality, and stability.
    3. Argue whether a system can be linear and time-invariant (LTI) by examining a collection of inputs and outputs.

    YouTube Videos

    Systems Fundamentals

    Connection of DT Systems

    Systems Properties: Linearity

    DT System Properties: Time Invariance

    System Properties: Stability (Revisit)

    Revisiting Linearity Proofs

    Revisiting Time-Invariance Proofs

    Proving Linearity

    Proving Time Invariance

    System Properties: Causality

    Summary

    Discrete-Time Systems

    Definition: A discrete-time (DT) system transforms an input signal \(x[n]\) into an output signal \(y[n]\).clipboard_e9007f0fe0e8757bdb8e6654b806a8145.png

    Figure 1.2.1: Basic discrete system flow diagram.

    The system S is an equation relating the input signal \(x[n]\) to the output signal \(y[n]\).

    Example

    \[\displaystyle y[n] = \frac{1}{7}\big(x[n] + x[n-1] + x[n-2] + x[n-3] + x[n-4] + x[n-5] + x[n-6]\big)\]

    The output signal is given by the average of the most recent input signal values (a running average). For example, if \(x[n]\) represents the number of new cases of a disease on a given day, then \(y[n]\) is the running average of new cases. This system is non-recursive because \(y[n]\) does not depend on past or future values of \(y[n]\).

    Example

    \[\displaystyle y[n] = 1.03\,y[n-1] + x[n]\]

    This system can be interpreted as a bank balance with positive 3% interest and daily transactions. This system is recursive because the current value of \(y[n]\) depends on a past value of the output \(y[n-1]\).

    Connections of Discrete-Time Systems

    There are three ways to connect systems:

    Series (Cascade) - The output from one system is fed into another system.

    \[y[n] = S_2\{S_1\{x[n]\}\}\]

    clipboard_ee88eb837faec89d5c4bc50e2a898e301.png

    Figure 1.2.2: Basic discrete series (cascade) system flow diagram.

    Parallel - The same input signal is applied to both systems and then combined.

    \[y[n] = y_1[n] + y_2[n] = S_1\{x[n]\} + S_2\{x[n]\}\]

    clipboard_ec5fb7f5e3e02fc514bc76238092bf1e0.png

    Figure 1.2.3: Basic discrete parallel system flow diagram.

    Feedback - One system output is fed back and combined with the input to repeat the process.

    Feedback_System.png

    Figure 1.2.4: Basic discrete feedback system flow diagram.


    System Properties

    Linearity

    A linear system must satisfy both the scaling and superposition properties.

    Scaling:

    \[T\{a\,x[n]\} = a\,T\{x[n]\}\]

    Scaling.png

    Figure 1.2.5: Discrete flow diagram showing a visual proof for the scaling property.

    Superposition:

    \[T\{x_1[n] + x_2[n]\} = T\{x_1[n]\} + T\{x_2[n]\}\]

    Superposition.png

    Figure 1.2.6: Discrete flow diagram showing a visual proof for the superposition property.

    Time-Invariance

    If \(y[n] = S\{x[n]\}\), then the system is time-invariant if: \(S\{x[n-n_0]\} = y[n-n_0]\)

    Time-Invariance.png

    Figure 1.2.5: Discrete flow diagram showing a delay in series with a system.

    Casuality

    A system is causal if all output values depend only on past and present values. I,e, the index for the output must always be greater than the index of the system.

    Stability

    For a system to be stable, given any input that is bounded, the output must always be bounded as well.

    Stability.png

    Figure 1.2.6: Graphical stability representation.

    Inverteability

    A system is invertible if distinct inputs lead to distinct outputs. A system is invertible if an inverse system exists that recovers the input from the output.

    Inverse_System.png

    Figure 1.2.7: Flow diagram showing a system and it's inverse system in parallel producing the initial input.


    1.2: Discrete-Time Systems is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?