1.7: DTFS Properties
- Page ID
- 126933
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Learning Objectives: Discrete-Time Fourier Series (DTFS) Properties
- Solve for Fourier series coefficients for new signals using DTFS properties by relating the new signal to signals with known FS coefficients.
YouTube Videos
Discrete-Time Fourier Series Properties
DT Fourier Series Properties Examples
Discrete Time Fourier Series Example
Summary
Core DTFS equations
If x[n] is periodic with period N and fundamental frequency equal to \(\omega_0=\dfrac{2\pi}{N}\), we write:
\(x[n] \;\Longleftrightarrow\; a_k\)
where \(\Longleftrightarrow\) represents a Fourier Series.
Synthesis (reconstruction) Equation:
\[ x[n] = \sum_{k=\langle N\rangle} a_k\,e^{j k\omega_0 n} \]
Analysis (coefficients) Equation:
\[ a_k = \frac{1}{N}\sum_{n=\langle N\rangle} x[n]\,e^{-j k\omega_0 n} \]
Key DTFS properties
-
Multiplication in time
If \(x[n]\Longleftrightarrow a_k\) and \(y[n]\Longleftrightarrow b_k\) (same period \(N\)), then
\[ x[n]\,y[n] \;\Longleftrightarrow\; d_k = \sum_{\ell=\langle N\rangle} a_\ell\,b_{k-\ell} \]
(This looks like a discrete convolution-style summation in the coefficient index.)
-
First difference
If \(x[n]\Longleftrightarrow a_k\), then
\[ x[n]-x[n-1] \;\Longleftrightarrow\; \Bigl(1-e^{-j\frac{2\pi}{N}k}\Bigr)\,a_k \]
-
Parseval’s relation (average power)
\[ \frac{1}{N}\sum_{n=\langle N\rangle}|x[n]|^2 = \sum_{k=\langle N\rangle}|a_k|^2 \]
Left side = average power in one period of \(x[n]\). Right side = sum of powers in each harmonic (via \(a_k\)).
Table 1.7.1 Properties of the Discrete-Time Fourier Series (DTFS)
| Periodic Signal | Fourier Series Coefficients |
|---|---|
| \(x[n]\), \(y[n]\) periodic with period \(N\) and fundamental frequency \(\omega_0=\frac{2\pi}{N}\) |
\(a_k\), \(b_k\) periodic with period \(N\) |
| Parseval’s Relation for Periodic Signals | |
| \(\displaystyle \frac{1}{N}\sum_{n=(N)}|x[n]|^2\) = \(\displaystyle \sum_{k=(N)}|a_k|^2\) | |
| Linearity | |
| \(\displaystyle A\,x[n] + B\,y[n]\) | \(\displaystyle A\,a_k + B\,b_k\) |
| Time Shifting | |
| \(\displaystyle x[n-n_0]\) | \(\displaystyle a_k\,e^{-j\frac{2\pi}{N}kn_0}\) |
| Frequency Shifting | |
| \(\displaystyle e^{j\frac{2\pi}{N}mn}\,x[n]\) | \(\displaystyle a_{k-m}\) |
| Conjugation | |
| \(\displaystyle x^*[n]\) | \(\displaystyle a_{-k}^*\) |
| Time Reversal | |
| \(\displaystyle x[-n]\) | \(\displaystyle a_{-k}\) |
| Time Scaling | |
| \(\displaystyle x_m[n]= \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m\\[2pt] 0, & \text{if } n \text{ is not a multiple of } m \end{cases} \) \(\displaystyle \text{(periodic with period } mN)\) |
\(\displaystyle \frac{1}{m}a_k\) \(\displaystyle \text{(viewed as periodic with period } mN)\) |
| Periodic Convolution | |
| \(\displaystyle \sum_{r=(N)} x[r]\,y[n-r]\) | \(\displaystyle N\,a_k\,b_k\) |
| Multiplication | |
| \(\displaystyle x[n]\,y[n]\) | \(\displaystyle \sum_{\ell=(N)} a_\ell\,b_{k-\ell}\) |
| Conjugate Symmetry for Real Signals | |
| \(\displaystyle x[n]\ \text{real}\) | \(\displaystyle a_k=a_{-k}^*\) \(\displaystyle \Re\{a_k\}=\Re\{a_{-k}\}\) \(\displaystyle \Im\{a_k\}=-\Im\{a_{-k}\}\) \(\displaystyle |a_k|=|a_{-k}|\) \(\displaystyle \angle a_k=-\angle a_{-k}\) |
| Real and Even Signals | |
| \(\displaystyle x[n]\ \text{real and even}\) | \(\displaystyle a_k\ \text{real and even}\) |
| Real and Odd Signals | |
| \(\displaystyle x[n]\ \text{real and odd}\) | \(\displaystyle a_k\ \text{purely imaginary and odd}\) |

