Skip to main content
Engineering LibreTexts

1.7: DTFS Properties

  • Page ID
    126933
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives: Discrete-Time Fourier Series (DTFS) Properties

    1. Solve for Fourier series coefficients for new signals using DTFS properties by relating the new signal to signals with known FS coefficients.

    YouTube Videos

    Discrete-Time Fourier Series Properties

    DT Fourier Series Properties Examples

    Discrete Time Fourier Series Example

    Summary

    Core DTFS equations

    If x[n] is periodic with period N and fundamental frequency equal to \(\omega_0=\dfrac{2\pi}{N}\), we write:

    \(x[n] \;\Longleftrightarrow\; a_k\)

    where \(\Longleftrightarrow\) represents a Fourier Series.

    Synthesis (reconstruction) Equation:

    \[ x[n] = \sum_{k=\langle N\rangle} a_k\,e^{j k\omega_0 n} \]

    Analysis (coefficients) Equation:

    \[ a_k = \frac{1}{N}\sum_{n=\langle N\rangle} x[n]\,e^{-j k\omega_0 n} \]

    Key DTFS properties
    • Multiplication in time

    If \(x[n]\Longleftrightarrow a_k\) and \(y[n]\Longleftrightarrow b_k\) (same period \(N\)), then

    \[ x[n]\,y[n] \;\Longleftrightarrow\; d_k = \sum_{\ell=\langle N\rangle} a_\ell\,b_{k-\ell} \]

    (This looks like a discrete convolution-style summation in the coefficient index.)

    • First difference

    If \(x[n]\Longleftrightarrow a_k\), then

    \[ x[n]-x[n-1] \;\Longleftrightarrow\; \Bigl(1-e^{-j\frac{2\pi}{N}k}\Bigr)\,a_k \]

    • Parseval’s relation (average power)

    \[ \frac{1}{N}\sum_{n=\langle N\rangle}|x[n]|^2 = \sum_{k=\langle N\rangle}|a_k|^2 \]

    Left side = average power in one period of \(x[n]\). Right side = sum of powers in each harmonic (via \(a_k\)).

    Table 1.7.1 Properties of the Discrete-Time Fourier Series (DTFS)

    Periodic Signal Fourier Series Coefficients
    \(x[n]\), \(y[n]\) periodic with period \(N\) and
    fundamental frequency \(\omega_0=\frac{2\pi}{N}\)
    \(a_k\), \(b_k\) periodic with period \(N\)
    Parseval’s Relation for Periodic Signals
    \(\displaystyle \frac{1}{N}\sum_{n=(N)}|x[n]|^2\) = \(\displaystyle \sum_{k=(N)}|a_k|^2\)
    Linearity
    \(\displaystyle A\,x[n] + B\,y[n]\) \(\displaystyle A\,a_k + B\,b_k\)
    Time Shifting
    \(\displaystyle x[n-n_0]\) \(\displaystyle a_k\,e^{-j\frac{2\pi}{N}kn_0}\)
    Frequency Shifting
    \(\displaystyle e^{j\frac{2\pi}{N}mn}\,x[n]\) \(\displaystyle a_{k-m}\)
    Conjugation
    \(\displaystyle x^*[n]\) \(\displaystyle a_{-k}^*\)
    Time Reversal
    \(\displaystyle x[-n]\) \(\displaystyle a_{-k}\)
    Time Scaling
    \(\displaystyle x_m[n]= \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m\\[2pt] 0, & \text{if } n \text{ is not a multiple of } m \end{cases} \)
    \(\displaystyle \text{(periodic with period } mN)\)
    \(\displaystyle \frac{1}{m}a_k\)
    \(\displaystyle \text{(viewed as periodic with period } mN)\)
    Periodic Convolution
    \(\displaystyle \sum_{r=(N)} x[r]\,y[n-r]\) \(\displaystyle N\,a_k\,b_k\)
    Multiplication
    \(\displaystyle x[n]\,y[n]\) \(\displaystyle \sum_{\ell=(N)} a_\ell\,b_{k-\ell}\)
    Conjugate Symmetry for Real Signals
    \(\displaystyle x[n]\ \text{real}\) \(\displaystyle a_k=a_{-k}^*\)
    \(\displaystyle \Re\{a_k\}=\Re\{a_{-k}\}\)
    \(\displaystyle \Im\{a_k\}=-\Im\{a_{-k}\}\)
    \(\displaystyle |a_k|=|a_{-k}|\)
    \(\displaystyle \angle a_k=-\angle a_{-k}\)
    Real and Even Signals
    \(\displaystyle x[n]\ \text{real and even}\) \(\displaystyle a_k\ \text{real and even}\)
    Real and Odd Signals
    \(\displaystyle x[n]\ \text{real and odd}\) \(\displaystyle a_k\ \text{purely imaginary and odd}\)

    1.7: DTFS Properties is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?