Skip to main content
Engineering LibreTexts

2.15: Amplitude Modulation

  • Page ID
    126962
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives: Amplitude Modulation

    1. Explain what amplitude modulation is and how it works in time and frequency
    2. Explain basic demodulation in frequency
    3. Understand how signal bandwidth determines the spacing of carrier frequencies in AM systems

    YouTube Videos

    Amplitude Modulation

    Demodulating AM Signals

    Summary

    Amplitude Modulation (AM)

    \[ y(t)=x(t)\cos(\omega_c t) \]

    \(\cos(\omega_c t)\): carrier signal with a higher frequency
    \(x(t)\): modulating signal containing information

    How high should the modulation frequency be?

    \[ y(t)=x(t)\cdot\cos(\omega_c t) \;\;\leftrightarrow\;\; Y(j\omega)=\frac{1}{2\pi}\left[X(j\omega)*\left(\pi\delta(\omega-\omega_c)+\pi\delta(\omega+\omega_c)\right)\right] \]

    \[ Y(j\omega)=\frac{1}{2}\,X\!\big(j(\omega-\omega_c)\big)+\frac{1}{2}\,X\!\big(j(\omega+\omega_c)\big) \]

    \(\omega_c\) large enough so the 2 replicas of \(X(j\omega)\) do not overlap.Figure_1.png

    Figure 2.15.1: Spectrum of the output signal when x(t) is multiplied by a carrier signal \(\cos(9\omega_M)\)

    Figure 2.15.1 shows that a whole copy of the object spectrum is displaced at a higher frequency, i.e., \(\omega_c = \pm 9\,\omega_M\)
    We need a demodulated system to bring back the replicas @ 0 frequency axis

    Frequency Division Multiplexing (FDM)

    Definition: Frequency Division Multiplexing (FDM) is a technique for transmitting multiple signals simultaneously by assigning each signal a unique carrier frequency.

    In theory, we can retrieve (i.e., demodulate) each signal

    Figure_2.png

    Figure 2.15.2: Output spectrum when a complex signal is multiplied by a carrier signal \(\cos(9\omega_M)\). The individual components of the combined signal can be transmitted simultaneously without overlap.

    AM_VS_FM.png

    Figure 2.15.3: Visual representation of AM V.S. FM.

    \[ y(t)=x(t)\cos(\omega_c t) \]

    AM = Amplitude Modulation → \(x(t)\) is modulated with a cosine with high frequency, modulating its amplitude.

    FM = Frequency Modulation → next class

    Demodulation

    How can we recover the original signal \(x(t)\) from the modulated signal \(y(t)\)?

    Step 1 to recover the signal is

    Two Signals Adding.png

    Figure 2.15.4: Flow diagram of the first step to demodulation.

    \[ r(t)=y(t)\cos(\omega_c t) \]

    \[ R(j\omega)=\frac{1}{2}\,Y\!\big(j(\omega-\omega_c)\big)+\frac{1}{2}\,Y\!\big(j(\omega+\omega_c)\big) \] scaled version of the input spectrum

    AM_Backward1.png

    Figure 2.15.5: Representation of step 1 to demodulation being applied to the signal from Figure 2.15.1.

    Step 2: Apply lowpass filter

    \[ H_D(j\omega)= \begin{cases} 1, & |\omega|\le \omega_M\\ 0, & |\omega|>\omega_M \end{cases} \]

    \(y(t)\;\xrightarrow{\ \times\cos(\omega_c t)\ }\;r(t)\;\xrightarrow{\ H_D(j\omega)\ }\;s(t)\)

    \[ S(j\omega)=R(j\omega)\cdot H_D(j\omega) \]

    The demodulated cosine should have exactly the same frequency and phase as the carrier signal.

    AM_Backward2.png

    Figure 2.15.6: Representation of step 2 to demodulation being applied to the signals from Figure 2.15.1 & 2.15.5.

    \(S'(j\omega)\) has the same spectrum as the original spectrum \(X(j\omega)\) but with a different gain, i.e., \[ S'(j\omega)=\frac{1}{2}X(j\omega) \] → by changing the volume (i.e., gain) then we can match \[ X(j\omega)=2S'(j\omega) \]


    2.15: Amplitude Modulation is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?