Skip to main content
Engineering LibreTexts

2.16: Frequency Modulation

  • Page ID
    126963
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives: Frequency Modulation

    1. Understand how instantaneous phase and instantaneous frequency are related for FM signals.
    2. Recognize the differences between narrowband and broadband FM spectra.

    YouTube Videos

    MIT Courseware Lecture 24: Modulation, Part 2 (Credit to Prof. Alan V. Oppenheim)

    Summary

    Frequency Modulation (FM)

    Definition: Frequency Modulation (FM) → The modulating signal is used to control the frequency of a sinusoidal carrier

    • With FM, the envelope of the carrier is constant
    • FM systems are highly non-linear
    • FM reception is typically better than AM reception

    Consider a sinusoidal carrier: \[ c(t)=A\cos(\omega_c t+\theta_c)=\cos(\theta(t)) \]

    \(\omega_c\): carrier's frequency
    \(\theta_c\): carrier's phase

    Angle Modulation: \(\theta(t)=\omega_c t+\theta_c\) corresponds to using the modulating signal to change/vary the phase \(\theta(t)\)

    \[ y(t)=A\cos\!\big[\omega_c t+\theta_c(t)\big] \quad \text{where} \quad \theta_c(t)=\theta_0+k_p x(t) \]

    If \(x(t)\) is constant, the phase of \(y(t)\), i.e., \(\theta_c(t)\), is constant and proportional to the amplitude of \(x(t)\)

    \[ y(t)=A\cos[\theta(t)] \]

    \[ \frac{d\theta(t)}{dt}=\omega_c+k_f x(t) \qquad \text{if } x(t)=\text{constant} \]

    Frequency Modulation

    \[ y(t)=A\cos\!\Big[(\omega_c+k_f x)t\Big] \]

    \(y(t)\) follows a sinusoid with a frequency that is offset from the carrier frequency \(\omega_c\) by an amount proportional to the amplitude of \(x(t)\).

    Note that phase modulation and frequency modulation are different forms of angle modulation

    For phase modulation: \[ \frac{d\theta(t)}{dt}=\omega_c+k_p\frac{dx(t)}{dt} \]

    Frequency modulation with a step corresponds to the frequency of the sinusoidal carrier changing instantaneously from one value to another when \(x(t)\) changes value at \(t=0\).

    clipboard_ebb852ad55aff7399274236aaa652a085.png clipboard_e598f222bec866f8c382fc0bdfd80589a.png clipboard_e2218a2e855597081d0d696b9c286a92d.png

    Figure 2.16.1: (a) Phase modulation if x(t) is a ramp signal; (b) Frequency modulation if x(t) is a ramp signal; and (c) Frequency modulation if x(t) is a unit step.

    Instantaneous Frequency

    When the frequency modulation is a ramp, the frequency changes linearly

    \[ y(t)=A\cos\theta(t) \qquad \omega_i=\frac{d\theta(t)}{dt} \]

    If \[ y(t)=A\cos[\omega_c t+\theta_0] \;\Rightarrow\; \omega_i=\frac{d}{dt}[\omega_c t+\theta_0]=\omega_c \]

    For FM, \[ \theta(t)=(\omega_c+k_f x(t))t \;\Rightarrow\; \omega_i=\omega_c+k_f x(t) \]

    For phase modulation \[ \omega_i=\omega_c+k_p\frac{dx(t)}{dt} \]

    Narrowband Frequency Modulation

    \[ x(t)=A\cos(\omega_m t) \]

    \[ \omega_i=\omega_c+k_f A\cos(\omega_m t) \]

    The instantaneous frequency \(\omega_i\) ranges from \(\omega_c-k_fA\) to \(\omega_c+k_fA\)

    \[ \Delta\omega=\frac{\max-\min}{2}=k_fA \qquad \]

    Thus \[ \omega_i=\omega_c+\Delta\omega\cos(\omega_m t) \]

    \[ y(t)=\cos\!\left[\omega_c t+\int x(t)\,dt\right] =\cos\!\left[\omega_c t+\frac{\Delta\omega}{\omega_m}\sin(\omega_m t)+\theta_0\right] \]

    m: modulating index

    \[ y(t)=\cos\!\big[\omega_c t+m\sin\omega_m t+\theta_0\big] \] if \(m\) is small → narrowband FM

    if \(\theta_0=0\)

    \[ y(t)=\cos(\omega_c t)\cos(m\sin\omega_m t)-\sin(\omega_c t)\sin(m\sin\omega_m t) \]

    If \(m \ll\), then \(\cos(m\sin\omega_m t)\approx 1\) and \(\sin(m\sin\omega_m t)\approx m\sin\omega_m t\) since\(\sin\theta\approx \theta\). Thus \[ y(t)\approx \cos(\omega_c t)-m\sin(\omega_c t)\sin(\omega_m t) \]

    Figure_8_33.png

    Figure 2.16.2: Narrowband FM spectrum approximation.

    Wideband Frequency Modulation

    \[ y(t)=\cos\!\big[\omega_c t+m\sin\omega_m t+\theta_0\big] \] if \(m\) is large → wideband FM

    \[ y(t)=\cos(\omega_c t)\cos(m\sin\omega_m t)-\sin(\omega_c t)\sin(m\sin\omega_m t) \]

    (\(\cos(\omega_c t)\cos(m\sin\omega_m t)\)): \(\cos(\omega_c t)\) carrier modulating by \(\cos(m\sin\omega_m t)\)
    (\(\cos(m\sin\omega_m t)\)) and (\(\sin(m\sin\omega_m t)\)): periodic signals with frequency \(\omega_m\)
    (\(\sin(\omega_c t)\sin(m\sin\omega_m t)\)): \(\sin(\omega_c t)\) carrier modulated by \(\sin(m\sin\omega_m t)\)

    Figure_8_35.png

    Figure 2.16.3: Wideband frequency modulation spectrum magnitude with \(m=11\): \(\cos(\omega_c t)\cos(m\sin\omega_m t)\) (top); \(\sin(\omega_c t)\sin(m\sin\omega_m t)\) (middle); \(\cos(\omega_c t+m\sin\omega_m t)\) (bottom).


    2.16: Frequency Modulation is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?