2.16: Frequency Modulation
- Page ID
- 126963
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Learning Objectives: Frequency Modulation
- Understand how instantaneous phase and instantaneous frequency are related for FM signals.
- Recognize the differences between narrowband and broadband FM spectra.
YouTube Videos
MIT Courseware Lecture 24: Modulation, Part 2 (Credit to Prof. Alan V. Oppenheim)
Summary
Frequency Modulation (FM)
Definition: Frequency Modulation (FM) → The modulating signal is used to control the frequency of a sinusoidal carrier
- With FM, the envelope of the carrier is constant
- FM systems are highly non-linear
- FM reception is typically better than AM reception
Consider a sinusoidal carrier: \[ c(t)=A\cos(\omega_c t+\theta_c)=\cos(\theta(t)) \]
\(\omega_c\): carrier's frequency
\(\theta_c\): carrier's phase
Angle Modulation: \(\theta(t)=\omega_c t+\theta_c\) corresponds to using the modulating signal to change/vary the phase \(\theta(t)\)
\[ y(t)=A\cos\!\big[\omega_c t+\theta_c(t)\big] \quad \text{where} \quad \theta_c(t)=\theta_0+k_p x(t) \]
If \(x(t)\) is constant, the phase of \(y(t)\), i.e., \(\theta_c(t)\), is constant and proportional to the amplitude of \(x(t)\)
\[ y(t)=A\cos[\theta(t)] \]
\[ \frac{d\theta(t)}{dt}=\omega_c+k_f x(t) \qquad \text{if } x(t)=\text{constant} \]
\[ y(t)=A\cos\!\Big[(\omega_c+k_f x)t\Big] \]
\(y(t)\) follows a sinusoid with a frequency that is offset from the carrier frequency \(\omega_c\) by an amount proportional to the amplitude of \(x(t)\).
Note that phase modulation and frequency modulation are different forms of angle modulation
For phase modulation: \[ \frac{d\theta(t)}{dt}=\omega_c+k_p\frac{dx(t)}{dt} \]
Frequency modulation with a step corresponds to the frequency of the sinusoidal carrier changing instantaneously from one value to another when \(x(t)\) changes value at \(t=0\).

Figure 2.16.1: (a) Phase modulation if x(t) is a ramp signal; (b) Frequency modulation if x(t) is a ramp signal; and (c) Frequency modulation if x(t) is a unit step.
Instantaneous Frequency
When the frequency modulation is a ramp, the frequency changes linearly
\[ y(t)=A\cos\theta(t) \qquad \omega_i=\frac{d\theta(t)}{dt} \]
If \[ y(t)=A\cos[\omega_c t+\theta_0] \;\Rightarrow\; \omega_i=\frac{d}{dt}[\omega_c t+\theta_0]=\omega_c \]
For FM, \[ \theta(t)=(\omega_c+k_f x(t))t \;\Rightarrow\; \omega_i=\omega_c+k_f x(t) \]
For phase modulation \[ \omega_i=\omega_c+k_p\frac{dx(t)}{dt} \]
Narrowband Frequency Modulation
\[ x(t)=A\cos(\omega_m t) \]
\[ \omega_i=\omega_c+k_f A\cos(\omega_m t) \]
The instantaneous frequency \(\omega_i\) ranges from \(\omega_c-k_fA\) to \(\omega_c+k_fA\)
\[ \Delta\omega=\frac{\max-\min}{2}=k_fA \qquad \]
Thus \[ \omega_i=\omega_c+\Delta\omega\cos(\omega_m t) \]
\[ y(t)=\cos\!\left[\omega_c t+\int x(t)\,dt\right] =\cos\!\left[\omega_c t+\frac{\Delta\omega}{\omega_m}\sin(\omega_m t)+\theta_0\right] \]
m: modulating index
\[ y(t)=\cos\!\big[\omega_c t+m\sin\omega_m t+\theta_0\big] \] if \(m\) is small → narrowband FM
if \(\theta_0=0\)
\[ y(t)=\cos(\omega_c t)\cos(m\sin\omega_m t)-\sin(\omega_c t)\sin(m\sin\omega_m t) \]
If \(m \ll\), then \(\cos(m\sin\omega_m t)\approx 1\) and \(\sin(m\sin\omega_m t)\approx m\sin\omega_m t\) since\(\sin\theta\approx \theta\). Thus \[ y(t)\approx \cos(\omega_c t)-m\sin(\omega_c t)\sin(\omega_m t) \]

Figure 2.16.2: Narrowband FM spectrum approximation.
Wideband Frequency Modulation
\[ y(t)=\cos\!\big[\omega_c t+m\sin\omega_m t+\theta_0\big] \] if \(m\) is large → wideband FM
\[ y(t)=\cos(\omega_c t)\cos(m\sin\omega_m t)-\sin(\omega_c t)\sin(m\sin\omega_m t) \]
(\(\cos(\omega_c t)\cos(m\sin\omega_m t)\)): \(\cos(\omega_c t)\) carrier modulating by \(\cos(m\sin\omega_m t)\)
(\(\cos(m\sin\omega_m t)\)) and (\(\sin(m\sin\omega_m t)\)): periodic signals with frequency \(\omega_m\)
(\(\sin(\omega_c t)\sin(m\sin\omega_m t)\)): \(\sin(\omega_c t)\) carrier modulated by \(\sin(m\sin\omega_m t)\)

Figure 2.16.3: Wideband frequency modulation spectrum magnitude with \(m=11\): \(\cos(\omega_c t)\cos(m\sin\omega_m t)\) (top); \(\sin(\omega_c t)\sin(m\sin\omega_m t)\) (middle); \(\cos(\omega_c t+m\sin\omega_m t)\) (bottom).

