2.21: Feedback
- Page ID
- 126968
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Learning Objectives: Feedback
- Understand how the closed-loop gain relates to the feedforward and feedback system functions
- Implement stabilization using negative feedback
- Design systems to compensate for nonideal amplifiers
YouTube Videos
Feedback
Feedback Stabilization Example
Summary
Feedback → using the output of a system to control or modify your input
└ Adaptive Optics

Figure 2.21.1: Example of an open-loop system.

Figure 2.21.2: Example of a closed-loop system.
Whereas the open-loop system does not allow us to make corrections, a closed-loop system allows us to have
- Better control of system components
- Being able to detect any misalignment
Linear Feedback Systems
Assumption: \(H(s)\) is either unilateral or bilateral transform → \(H(s)\) causal and \(ROC_H\) to the right of the rightmost pole

Figure 2.21.3: Example of a linear feedback system design.
\(r(t)\): signal fed back
\(e(t)=x(t)-r(t)\): error between input signal and actual response
\(H(s)\): system function of the forward path
\(G(s)\): system function of the feedback path
\(Q(s)\): closed-loop system function
\[ Q(s)=\frac{Y(s)}{X(s)}=\frac{H(s)}{1+G(s)H(s)} \]
include both forward and feedback paths
Inverse System Design

Figure 2.21.3: Example of an inverse system design.
\(H(s)=k\)
\(P(s)\): system function of feedback path \(=G(s)\)
\[ Q(s)=\frac{H(s)}{1+H(s)P(s)}=\frac{k}{1+kP(s)}\approx \frac{k}{kP(s)}=\frac{1}{P(s)} \]
\(k\gg\) large and \(1 \ll kP(s)\)
\(Q(s)=k\) is the inverse of the feedback system
Compensation for NonIdeal Elements
Use of feedback systems to correct some non-ideal properties/measurements of the open-loop system
\(G(s)=K\) → \[ Q(s)=\frac{H(s)}{1+G(s)H(s)}=\frac{H(s)}{1+K\,H(s)}\approx \frac{H(s)}{K\,H(s)}=\frac{1}{K}=Q(s) \]
CONDITION: the closed loop gain \(\frac{1}{K}\) is substantially less than the open-loop gain \(|H(j\omega)|\)
KEY POINT: If \(K\ll 1\), \(|H(j\omega)|\) is an amplifier but without erratic gain
WATCH OUT: Find right \(K\) so it is small for high \(|Q|\) but big enough so \(|KH| \gg 1\).
Stabilization of Unstable Systems
Use of feedback systems to stabilize systems that are a-priori unstable
(1) control trajectory of a rocket; (2) regularization of nuclear reactions in a nuclear power plant; (3) stabilization of an aircraft;
(4) natural and regulatory control of animal populations
\[ H(s)=\frac{b}{s-a} \] 1st-order system \(a>0\) → \(h(t)\) unstable
\[ G(s)=k \] constant gain
\begin{align*}
Q(s) &= \frac{H(s)}{1 + G(s)H(s)}
= \frac{\dfrac{b}{s-a}}{1 + k\,\dfrac{b}{s-a}}
= \frac{b}{s-a+kb}.
\end{align*}
pole @ \(s = a-kb\)
The close-loop system is stable if the pole \(s<0\), so \(kb>a\)
proportional feedback system
\[ H(s)=\frac{b}{s^2+a} \]
\(a>0\) → 2nd-order system → \(H(s)\) has imaginary poles and \(h(t)\) is sinusoidal
\(H(s)=\dfrac{b}{s^2+a}\), \(a<0\) → \(H(s)\) has one pole in the left-side plane and one in the right-half plane → \(H(s)\) is unstable.
\[ G(s)=k \]
\[ Q(s)=\frac{H(s)}{1+G(s)H(s)} =\frac{\dfrac{b}{s^2+a}}{1+k\,\dfrac{b}{s^2+a}} =\frac{b}{s^2+a+kb} \]
\[ \frac{b}{s^2+a+kb} =\frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2} \]
We cannot stabilize the system because we do not have any damping \(\zeta\).
\[ G(s)=k_1+k_2s \quad \text{(proportional-plus-derivative)} \]
\[ Q(s)=\frac{b}{s^2+bk_2s+(a+k_1b)} \]
where \(bk_2>0\) and \(a+k_1b>0\)
Sampled-data feedback systems
The output of a CT signal is sampled

Figure 2.21.4: Representation of the stabilization system for the given example.
\[ z(t)=d[n] \quad \text{for } nT\le t<(n+1)T \quad \text{only a period} \]
\[ d[n]=p[n]*g[n] \quad (\text{in TL}) \]
\[ p[n]=y(nT) \]
Tracking systems
Figure 2.21.5: Representation of a tracking system without (top) and with (bottom) accounting for disturbance \(d[n]\).

