Skip to main content
Engineering LibreTexts

2.21: Feedback

  • Page ID
    126968
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives: Feedback

    1. Understand how the closed-loop gain relates to the feedforward and feedback system functions
    2. Implement stabilization using negative feedback
    3. Design systems to compensate for nonideal amplifiers

    YouTube Videos

    Feedback

    Feedback Stabilization Example

    Summary

    Feedback → using the output of a system to control or modify your input

    └ Adaptive Optics

    FIgure_1.png

    Figure 2.21.1: Example of an open-loop system.

    Figure_2.png

    Figure 2.21.2: Example of a closed-loop system.

    Whereas the open-loop system does not allow us to make corrections, a closed-loop system allows us to have

    • Better control of system components
    • Being able to detect any misalignment
    Linear Feedback Systems

    Assumption: \(H(s)\) is either unilateral or bilateral transform → \(H(s)\) causal and \(ROC_H\) to the right of the rightmost pole

    Figure_3.png

    Figure 2.21.3: Example of a linear feedback system design.

    \(r(t)\): signal fed back

    \(e(t)=x(t)-r(t)\): error between input signal and actual response

    \(H(s)\): system function of the forward path
    \(G(s)\): system function of the feedback path
    \(Q(s)\): closed-loop system function

    \[ Q(s)=\frac{Y(s)}{X(s)}=\frac{H(s)}{1+G(s)H(s)} \]

    include both forward and feedback paths

    Inverse System Design

    Figure_4.png

    Figure 2.21.3: Example of an inverse system design.

    \(H(s)=k\)

    \(P(s)\): system function of feedback path \(=G(s)\)

    \[ Q(s)=\frac{H(s)}{1+H(s)P(s)}=\frac{k}{1+kP(s)}\approx \frac{k}{kP(s)}=\frac{1}{P(s)} \]

    \(k\gg\) large and \(1 \ll kP(s)\)

    \(Q(s)=k\) is the inverse of the feedback system

    Compensation for NonIdeal Elements

    Use of feedback systems to correct some non-ideal properties/measurements of the open-loop system

    \(G(s)=K\) → \[ Q(s)=\frac{H(s)}{1+G(s)H(s)}=\frac{H(s)}{1+K\,H(s)}\approx \frac{H(s)}{K\,H(s)}=\frac{1}{K}=Q(s) \]

    CONDITION: the closed loop gain \(\frac{1}{K}\) is substantially less than the open-loop gain \(|H(j\omega)|\)

    KEY POINT: If \(K\ll 1\), \(|H(j\omega)|\) is an amplifier but without erratic gain

    WATCH OUT: Find right \(K\) so it is small for high \(|Q|\) but big enough so \(|KH| \gg 1\).

    Stabilization of Unstable Systems

    Use of feedback systems to stabilize systems that are a-priori unstable

    Example

    (1) control trajectory of a rocket; (2) regularization of nuclear reactions in a nuclear power plant; (3) stabilization of an aircraft;

    (4) natural and regulatory control of animal populations

    \[ H(s)=\frac{b}{s-a} \] 1st-order system \(a>0\) → \(h(t)\) unstable

    \[ G(s)=k \] constant gain

    \begin{align*}
    Q(s) &= \frac{H(s)}{1 + G(s)H(s)}
    = \frac{\dfrac{b}{s-a}}{1 + k\,\dfrac{b}{s-a}}
    = \frac{b}{s-a+kb}.
    \end{align*}

    pole @ \(s = a-kb\)

    The close-loop system is stable if the pole \(s<0\), so \(kb>a\)

    proportional feedback system

    \[ H(s)=\frac{b}{s^2+a} \]

    \(a>0\) → 2nd-order system → \(H(s)\) has imaginary poles and \(h(t)\) is sinusoidal

    \(H(s)=\dfrac{b}{s^2+a}\), \(a<0\)\(H(s)\) has one pole in the left-side plane and one in the right-half plane → \(H(s)\) is unstable.

    \[ G(s)=k \]

    \[ Q(s)=\frac{H(s)}{1+G(s)H(s)} =\frac{\dfrac{b}{s^2+a}}{1+k\,\dfrac{b}{s^2+a}} =\frac{b}{s^2+a+kb} \]

    \[ \frac{b}{s^2+a+kb} =\frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2} \]

    We cannot stabilize the system because we do not have any damping \(\zeta\).

    \[ G(s)=k_1+k_2s \quad \text{(proportional-plus-derivative)} \]

    \[ Q(s)=\frac{b}{s^2+bk_2s+(a+k_1b)} \]

    where \(bk_2>0\) and \(a+k_1b>0\)

    Sampled-data feedback systems

    The output of a CT signal is sampled

    Figure_5.png

    Figure 2.21.4: Representation of the stabilization system for the given example.

    \[ z(t)=d[n] \quad \text{for } nT\le t<(n+1)T \quad \text{only a period} \]

    \[ d[n]=p[n]*g[n] \quad (\text{in TL}) \]

    \[ p[n]=y(nT) \]

    Tracking systems

    Figure_6.png

    Figure 2.21.5: Representation of a tracking system without (top) and with (bottom) accounting for disturbance \(d[n]\).


    2.21: Feedback is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?