Glossary
- Page ID
- 126580
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)| Words (or words that have the same definition) | The definition is case sensitive | (Optional) Image to display with the definition [Not displayed in Glossary, only in pop-up on pages] | (Optional) Caption for Image | (Optional) External or Internal Link | (Optional) Source for Definition |
|---|---|---|---|---|---|
| (Eg. "Genetic, Hereditary, DNA ...") | (Eg. "Relating to genes or heredity") | ![]() |
The infamous double helix | https://bio.libretexts.org/ | CC-BY-SA; Delmar Larsen |
|
Word(s) |
Definition |
Image | Caption | Link | Source |
|---|---|---|---|---|---|
Important Discrete Formulas & Tables:
Discrete-Time Convolution Equation
\[y[n] = \sum_{k=-\infty}^{\infty} x[k]\,h[n-k]\]
DTFS Synthesis (build \(x[n]\) from \(a_k\))
\[x[n] = \sum_{k=0}^{N-1} a_k\,e^{j\frac{2\pi}{N}kn}$$DTFS Analysis (compute \(a_k\) from \(x[n]\))
\[a_k = \frac{1}{N}\sum_{n=0}^{N-1} x[n]\,e^{-j\frac{2\pi}{N}kn}$$Table 1.7.1 Properties of the Discrete-Time Fourier Series (DTFS)
| Periodic Signal | Fourier Series Coefficients |
|---|---|
| \(x[n]\), \(y[n]\) periodic with period \(N\) and fundamental frequency \(\omega_0=\frac{2\pi}{N}\) |
\(a_k\), \(b_k\) periodic with period \(N\) |
| Parseval’s Relation for Periodic Signals | |
| \(\displaystyle \frac{1}{N}\sum_{n=(N)}|x[n]|^2\) = \(\displaystyle \sum_{k=(N)}|a_k|^2\) | |
| Linearity | |
| \(\displaystyle A\,x[n] + B\,y[n]\) | \(\displaystyle A\,a_k + B\,b_k\) |
| Time Shifting | |
| \(\displaystyle x[n-n_0]\) | \(\displaystyle a_k\,e^{-j\frac{2\pi}{N}kn_0}\) |
| Frequency Shifting | |
| \(\displaystyle e^{j\frac{2\pi}{N}mn}\,x[n]\) | \(\displaystyle a_{k-m}\) |
| Conjugation | |
| \(\displaystyle x^*[n]\) | \(\displaystyle a_{-k}^*\) |
| Time Reversal | |
| \(\displaystyle x[-n]\) | \(\displaystyle a_{-k}\) |
| Time Scaling | |
| \(\displaystyle x_m[n]= \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m\\[2pt] 0, & \text{if } n \text{ is not a multiple of } m \end{cases} \) \(\displaystyle \text{(periodic with period } mN)\) |
\(\displaystyle \frac{1}{m}a_k\) \(\displaystyle \text{(viewed as periodic with period } mN)\) |
| Periodic Convolution | |
| \(\displaystyle \sum_{r=(N)} x[r]\,y[n-r]\) | \(\displaystyle N\,a_k\,b_k\) |
| Multiplication | |
| \(\displaystyle x[n]\,y[n]\) | \(\displaystyle \sum_{\ell=(N)} a_\ell\,b_{k-\ell}\) |
| Conjugate Symmetry for Real Signals | |
| \(\displaystyle x[n]\ \text{real}\) | \(\displaystyle a_k=a_{-k}^*\) \(\displaystyle \Re\{a_k\}=\Re\{a_{-k}\}\) \(\displaystyle \Im\{a_k\}=-\Im\{a_{-k}\}\) \(\displaystyle |a_k|=|a_{-k}|\) \(\displaystyle \angle a_k=-\angle a_{-k}\) |
| Real and Even Signals | |
| \(\displaystyle x[n]\ \text{real and even}\) | \(\displaystyle a_k\ \text{real and even}\) |
| Real and Odd Signals | |
| \(\displaystyle x[n]\ \text{real and odd}\) | \(\displaystyle a_k\ \text{purely imaginary and odd}\) |
DTFT Analysis Equation (Definition)
DTFT pair (Analysis and Synthesis):
\[ X\!\left(e^{j\omega}\right)=\sum_{n=-\infty}^{\infty} x[n]\,e^{-j\omega n} \quad\Longleftrightarrow\quad x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi} X\!\left(e^{j\omega}\right)e^{j\omega n}\,d\omega. \]Table 1.10.1 Properties of the Discrete-Time Fourier Transform (DTFT)
| Discrete-Time Signal | Fourier Transform |
|---|---|
| \(x[n]\), \(y[n]\) | \(X(e^{j\omega})\), \(Y(e^{j\omega})\) periodic with period \(2\pi\) |
| Parseval’s Relation for Aperiodic Signals | |
| \(\displaystyle \sum_{n=-\infty}^{\infty} |x[n]|^2\) = \(\displaystyle \frac{1}{2\pi}\int_{2\pi} |X(e^{j\omega})|^2\,d\omega\) | |
| Linearity | |
| \(\displaystyle a\,x[n] + b\,y[n]\) | \(\displaystyle a\,X(e^{j\omega}) + b\,Y(e^{j\omega})\) |
| Time Shifting | |
| \(\displaystyle x[n-n_0]\) | \(\displaystyle e^{-j\omega n_0}X(e^{j\omega})\) |
| Frequency Shifting | |
| \(\displaystyle e^{j\omega_0 n}\,x[n]\) | \(\displaystyle X\!\left(e^{j(\omega-\omega_0)}\right)\) |
| Conjugation | |
| \(\displaystyle x^*[n]\) | \(\displaystyle X^*(e^{-j\omega})\) |
| Time Reversal | |
| \(\displaystyle x[-n]\) | \(\displaystyle X(e^{-j\omega})\) |
| Time Expansion | |
| \(\displaystyle x_k[n]= \begin{cases} x[n/k], & \text{if } n \text{ is a multiple of } k\\[2pt] 0, & \text{if } n \text{ is not a multiple of } k \end{cases} \) | \(\displaystyle X(e^{jk\omega})\) |
| Convolution | |
| \(\displaystyle x[n]*y[n]\) | \(\displaystyle X(e^{j\omega})\,Y(e^{j\omega})\) |
| Multiplication | |
| \(\displaystyle x[n]\,y[n]\) | \(\displaystyle \frac{1}{2\pi}\int_{2\pi} X(e^{j\theta})\,Y(e^{j(\omega-\theta)})\,d\theta\) |
| Differentiation in Frequency | |
| \(\displaystyle n\,x[n]\) | \(\displaystyle j\,\frac{dX(e^{j\omega})}{d\omega}\) |
Table 1.10.2 Basic Discrete-Time Fourier Transform (DTFT) Pairs
| Signal | Fourier Transform | Fourier Series Coefficients (if periodic) |
|---|---|---|
| \(\displaystyle \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{N}kn}\) | \(\displaystyle 2\pi \sum_{k=-\infty}^{\infty} a_k\,\delta\!\left(\omega-\frac{2\pi k}{N}\right)\) | \(\displaystyle a_k\) |
| \(\displaystyle e^{j\omega_0 n}\) | \(\displaystyle 2\pi\sum_{\ell=-\infty}^{\infty}\delta(\omega-\omega_0-2\pi\ell)\) |
(a) \(\displaystyle \omega_0=\frac{2\pi m}{N}\)
\[ a_k= \begin{cases} 1, & k=m,\, m\pm N,\, m\pm 2N,\,\ldots\\ 0, & \text{otherwise} \end{cases} \]
(b) \(\displaystyle \frac{\omega_0}{2\pi}\) irrational → The signal is aperiodic
|
| \(\displaystyle \cos(\omega_0 n)\) | \(\displaystyle \pi\sum_{\ell=-\infty}^{\infty}\Big[\delta(\omega-\omega_0-2\pi\ell)+\delta(\omega+\omega_0-2\pi\ell)\Big]\) |
(a) \(\displaystyle \omega_0=\frac{2\pi m}{N}\)
\[ a_k= \begin{cases} \frac{1}{2}, & k=m,\, m\pm N,\, m\pm 2N,\,\ldots\\ \frac{1}{2}, & k=-m,\, -m\pm N,\, -m\pm 2N,\,\ldots\\ 0, & \text{otherwise} \end{cases} \]
(b) \(\displaystyle \frac{\omega_0}{2\pi}\) irrational → The signal is aperiodic
|
| \(\displaystyle \sin(\omega_0 n)\) | \(\displaystyle \frac{\pi}{j}\sum_{\ell=-\infty}^{\infty}\Big[\delta(\omega-\omega_0-2\pi\ell)-\delta(\omega+\omega_0-2\pi\ell)\Big]\) |
(a) \(\displaystyle \omega_0=\frac{2\pi r}{N}\)
\[ a_k= \begin{cases} -\frac{j}{2}, & k=r,\, r\pm N,\, r\pm 2N,\,\ldots\\ \frac{j}{2}, & k=-r,\, -r\pm N,\, -r\pm 2N,\,\ldots\\ 0, & \text{otherwise} \end{cases} \]
(b) \(\displaystyle \frac{\omega_0}{2\pi}\) irrational → The signal is aperiodic
|
| \(\displaystyle x[n]=1\) | \(\displaystyle 2\pi\sum_{\ell=-\infty}^{\infty}\delta(\omega-2\pi\ell)\) | \[ a_k= \begin{cases} 1, & k=0,\, \pm N,\, \pm 2N,\,\ldots\\ 0, & \text{otherwise} \end{cases} \] |
|
Periodic square wave
\( x[n]= \begin{cases} 1, & |n|\le N_1\\ 0, & N_1<|n|\le N/2 \end{cases} \)
\(x[n+N]=x[n]\)
|
\(\displaystyle 2\pi\sum_{k=-\infty}^{\infty}a_k\,\delta\!\left(\omega-\frac{2\pi k}{N}\right)\) |
\[ a_k= \begin{cases} \dfrac{\sin\!\left(\dfrac{2\pi k}{N}\left(N_1+\frac{1}{2}\right)\right)}{N\sin\!\left(\dfrac{\pi k}{N}\right)}, & k\ne 0,\, \pm N,\, \pm 2N,\ldots\\[10pt] \dfrac{2N_1+1}{N}, & k=0,\, \pm N,\, \pm 2N,\ldots \end{cases} \]
|
| \(\displaystyle \sum_{k=-\infty}^{\infty}\delta[n-kN]\) | \(\displaystyle \frac{2\pi}{N}\sum_{k=-\infty}^{\infty}\delta\!\left(\omega-\frac{2\pi k}{N}\right)\) | \(\displaystyle a_k=\frac{1}{N}\ \text{for all }k\) |
| \(\displaystyle a^n u[n],\ \ |a|<1\) | \(\displaystyle \frac{1}{1-ae^{-j\omega}}\) | — |
| \( x[n]= \begin{cases} 1, & |n|\le N_1\\ 0, & |n|>N_1 \end{cases} \) | \(\displaystyle \frac{\sin\!\left(\omega\left(N_1+\frac{1}{2}\right)\right)}{\sin(\omega/2)}\) | — |
|
\( \frac{\sin\left(\frac{\omega_m}{\pi}n\right)}{n} \;=\; \frac{\omega_m}{\pi}\,\text{sinc}\!\left(\frac{\omega_m}{\pi}n\right) \)
\(0<\omega_m<\pi\)
|
\( X(\omega)= \begin{cases} 1, & 0\le |\omega| \le \omega_m\\ 0, & \omega_m<|\omega|\le \pi \end{cases} \)
\(X(\omega)\) periodic with period \(2\pi\)
|
— |
| \(\displaystyle \delta[n]\) | \(\displaystyle 1\) | — |
| \(\displaystyle u[n]\) | \(\displaystyle \frac{1}{1-e^{-j\omega}} + \pi\sum_{k=-\infty}^{\infty}\delta(\omega-2\pi k)\) | — |
| \(\displaystyle \delta[n-n_0]\) | \(\displaystyle e^{-j\omega n_0}\) | — |
\[ X(z)=\sum_{n=-\infty}^{\infty}x[n]\,z^{-n}. \]
Important Continuous Formulas & Tables:
\[ y(t)=\int_{-\infty}^{+\infty} x(\tau)\,h_{\tau}(t)\,d\tau \]
\[ y(t)=x(t)*h(t) \]

Figure 2.3.2: Animation showing the convolution between two rectangular functions.
Fourier Series (Synthesis and Analysis Equations)
Synthesis equation
\[ x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \]
Analysis equation
\[ a_k=\frac{1}{T}\int_T x(t)e^{-jk\omega_0 t}\,dt =\frac{1}{T}\int_T x(t)e^{-jk\frac{2\pi}{T}t}\,dt \]
Fourier Transform (Analysis and Synthesis Equations)
\(x(t)\) → Fourier Transform → \( X(j\omega)=\int_{-\infty}^{+\infty} x(t)\,e^{-j\omega t}\,dt \) → Inverse Fourier Transform → \( x(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty} X(j\omega)\,e^{j\omega t}\,d\omega \)
Laplace Transform \[ X(s)\triangleq \int_{-\infty}^{+\infty} x(t)e^{-st}\,dt \]
Laplace Transform Properties
\[ X(s)=\int_{-\infty}^{+\infty} x(t)\,e^{-st}\,dt \]
| Time | Laplace |
|---|---|
| \(y(t)=x(t-t_0)\) | \(Y(s)=e^{-st_0}X(s)\) same ROC |
| \(y(t)=e^{s_0 t}\,x(t)\) | \(Y(s)=X(s-s_0)\) shift ROC by \(s_0\) |
| \(y(t)=x(t)*h(t)\) | \(Y(s)=X(s)\cdot H(s)\) ROC of \(Y\) includes \(ROC_X\cap ROC_H\) (intersection) |
| \(y(t)=\dfrac{dx(t)}{dt}\) | \(Y(s)=s\,H(s)\) |
| \(y(t)=-t\,x(t)\) | \(Y(s)=\dfrac{d}{ds}X(s)\) |
| \(y(t)=\displaystyle\int_{-\infty}^{t}x(z)\,dz\) | \(Y(s)=\dfrac{1}{s}X(s)\) |
If \(x(t)=0\) for \(t<0\), \(x(0^+)=\displaystyle\lim_{s\to\infty} sX(s)\) Initial Value Theorem
If \(x(t)=0\) for \(t<0\), \(\displaystyle\lim_{t\to\infty}x(t)=\lim_{s\to 0} sX(s)\)
Laplace Transforms of Elementary Functions
| Signal | Transform | ROC |
|---|---|---|
| \(\delta(t)\) | \(1\) | All \(s\) |
| \(u(t)\) | \(\dfrac{1}{s}\) | \(\operatorname{Re}\{s\}>0\) |
| \(-u(-t)\) | \(\dfrac{1}{s}\) | \(\operatorname{Re}\{s\}<0\) |
| \(e^{-at}u(t)\) | \(\dfrac{1}{s+a}\) | \(\operatorname{Re}\{s\}>-a\) |
| \(-e^{-at}u(-t)\) | \(\dfrac{1}{s+a}\) | \(\operatorname{Re}\{s\}<-a\) |
| \(\delta(t-T)\) | \(e^{-sT}\) | All \(s\) |
| \([\cos \omega_0 t]u(t)\) | \(\dfrac{s}{s^2+\omega_0^2}\) | \(\operatorname{Re}\{s\}>0\) |
| \([\sin \omega_0 t]u(t)\) | \(\dfrac{\omega_0}{s^2+\omega_0^2}\) | \(\operatorname{Re}\{s\}>0\) |
| \([e^{-at}\cos \omega_0 t]u(t)\) | \(\dfrac{s+a}{(s+a)^2+\omega_0^2}\) | \(\operatorname{Re}\{s\}>-a\) |
| \([e^{-at}\sin \omega_0 t]u(t)\) | \(\dfrac{\omega_0}{(s+a)^2+\omega_0^2}\) | \(\operatorname{Re}\{s\}>-a\) |
| \(u_n(t)=\dfrac{d^n\delta(t)}{dt^n}\) | \(s^n\) | All \(s\) |
| \(u_{-n}(t)=u(t)*\cdots*u(t)\) (n times) | \(\dfrac{1}{s^n}\) | \(\operatorname{Re}\{s\}>0\) |


