Skip to main content
Engineering LibreTexts

Glossary

  • Page ID
    126580
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Example and Directions
    Words (or words that have the same definition) The definition is case sensitive (Optional) Image to display with the definition [Not displayed in Glossary, only in pop-up on pages] (Optional) Caption for Image (Optional) External or Internal Link (Optional) Source for Definition
    (Eg. "Genetic, Hereditary, DNA ...") (Eg. "Relating to genes or heredity") The infamous double helix https://bio.libretexts.org/ CC-BY-SA; Delmar Larsen
    Glossary Entries

    Word(s)

    Definition

    Image Caption Link Source
               

    Important Discrete Formulas & Tables:

    Discrete-Time Convolution Equation

    \[y[n] = \sum_{k=-\infty}^{\infty} x[k]\,h[n-k]\]

    DTFS Synthesis (build \(x[n]\) from \(a_k\))

    \[x[n] = \sum_{k=0}^{N-1} a_k\,e^{j\frac{2\pi}{N}kn}$$

    DTFS Analysis (compute \(a_k\) from \(x[n]\))

    \[a_k = \frac{1}{N}\sum_{n=0}^{N-1} x[n]\,e^{-j\frac{2\pi}{N}kn}$$

    Table 1.7.1 Properties of the Discrete-Time Fourier Series (DTFS)

    Periodic Signal Fourier Series Coefficients
    \(x[n]\), \(y[n]\) periodic with period \(N\) and
    fundamental frequency \(\omega_0=\frac{2\pi}{N}\)
    \(a_k\), \(b_k\) periodic with period \(N\)
    Parseval’s Relation for Periodic Signals
    \(\displaystyle \frac{1}{N}\sum_{n=(N)}|x[n]|^2\) = \(\displaystyle \sum_{k=(N)}|a_k|^2\)
    Linearity
    \(\displaystyle A\,x[n] + B\,y[n]\) \(\displaystyle A\,a_k + B\,b_k\)
    Time Shifting
    \(\displaystyle x[n-n_0]\) \(\displaystyle a_k\,e^{-j\frac{2\pi}{N}kn_0}\)
    Frequency Shifting
    \(\displaystyle e^{j\frac{2\pi}{N}mn}\,x[n]\) \(\displaystyle a_{k-m}\)
    Conjugation
    \(\displaystyle x^*[n]\) \(\displaystyle a_{-k}^*\)
    Time Reversal
    \(\displaystyle x[-n]\) \(\displaystyle a_{-k}\)
    Time Scaling
    \(\displaystyle x_m[n]= \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m\\[2pt] 0, & \text{if } n \text{ is not a multiple of } m \end{cases} \)
    \(\displaystyle \text{(periodic with period } mN)\)
    \(\displaystyle \frac{1}{m}a_k\)
    \(\displaystyle \text{(viewed as periodic with period } mN)\)
    Periodic Convolution
    \(\displaystyle \sum_{r=(N)} x[r]\,y[n-r]\) \(\displaystyle N\,a_k\,b_k\)
    Multiplication
    \(\displaystyle x[n]\,y[n]\) \(\displaystyle \sum_{\ell=(N)} a_\ell\,b_{k-\ell}\)
    Conjugate Symmetry for Real Signals
    \(\displaystyle x[n]\ \text{real}\) \(\displaystyle a_k=a_{-k}^*\)
    \(\displaystyle \Re\{a_k\}=\Re\{a_{-k}\}\)
    \(\displaystyle \Im\{a_k\}=-\Im\{a_{-k}\}\)
    \(\displaystyle |a_k|=|a_{-k}|\)
    \(\displaystyle \angle a_k=-\angle a_{-k}\)
    Real and Even Signals
    \(\displaystyle x[n]\ \text{real and even}\) \(\displaystyle a_k\ \text{real and even}\)
    Real and Odd Signals
    \(\displaystyle x[n]\ \text{real and odd}\) \(\displaystyle a_k\ \text{purely imaginary and odd}\)
    DTFT Analysis Equation (Definition)

    DTFT pair (Analysis and Synthesis):

    \[ X\!\left(e^{j\omega}\right)=\sum_{n=-\infty}^{\infty} x[n]\,e^{-j\omega n} \quad\Longleftrightarrow\quad x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi} X\!\left(e^{j\omega}\right)e^{j\omega n}\,d\omega. \]

    Table 1.10.1 Properties of the Discrete-Time Fourier Transform (DTFT)

    Discrete-Time Signal Fourier Transform
    \(x[n]\), \(y[n]\) \(X(e^{j\omega})\), \(Y(e^{j\omega})\) periodic with period \(2\pi\)
    Parseval’s Relation for Aperiodic Signals
    \(\displaystyle \sum_{n=-\infty}^{\infty} |x[n]|^2\) = \(\displaystyle \frac{1}{2\pi}\int_{2\pi} |X(e^{j\omega})|^2\,d\omega\)
    Linearity
    \(\displaystyle a\,x[n] + b\,y[n]\) \(\displaystyle a\,X(e^{j\omega}) + b\,Y(e^{j\omega})\)
    Time Shifting
    \(\displaystyle x[n-n_0]\) \(\displaystyle e^{-j\omega n_0}X(e^{j\omega})\)
    Frequency Shifting
    \(\displaystyle e^{j\omega_0 n}\,x[n]\) \(\displaystyle X\!\left(e^{j(\omega-\omega_0)}\right)\)
    Conjugation
    \(\displaystyle x^*[n]\) \(\displaystyle X^*(e^{-j\omega})\)
    Time Reversal
    \(\displaystyle x[-n]\) \(\displaystyle X(e^{-j\omega})\)
    Time Expansion
    \(\displaystyle x_k[n]= \begin{cases} x[n/k], & \text{if } n \text{ is a multiple of } k\\[2pt] 0, & \text{if } n \text{ is not a multiple of } k \end{cases} \) \(\displaystyle X(e^{jk\omega})\)
    Convolution
    \(\displaystyle x[n]*y[n]\) \(\displaystyle X(e^{j\omega})\,Y(e^{j\omega})\)
    Multiplication
    \(\displaystyle x[n]\,y[n]\) \(\displaystyle \frac{1}{2\pi}\int_{2\pi} X(e^{j\theta})\,Y(e^{j(\omega-\theta)})\,d\theta\)
    Differentiation in Frequency
    \(\displaystyle n\,x[n]\) \(\displaystyle j\,\frac{dX(e^{j\omega})}{d\omega}\)

    Table 1.10.2 Basic Discrete-Time Fourier Transform (DTFT) Pairs

    Signal Fourier Transform Fourier Series Coefficients (if periodic)
    \(\displaystyle \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{N}kn}\) \(\displaystyle 2\pi \sum_{k=-\infty}^{\infty} a_k\,\delta\!\left(\omega-\frac{2\pi k}{N}\right)\) \(\displaystyle a_k\)
    \(\displaystyle e^{j\omega_0 n}\) \(\displaystyle 2\pi\sum_{\ell=-\infty}^{\infty}\delta(\omega-\omega_0-2\pi\ell)\)
    (a) \(\displaystyle \omega_0=\frac{2\pi m}{N}\)
    \[ a_k= \begin{cases} 1, & k=m,\, m\pm N,\, m\pm 2N,\,\ldots\\ 0, & \text{otherwise} \end{cases} \]
    (b) \(\displaystyle \frac{\omega_0}{2\pi}\) irrational → The signal is aperiodic
    \(\displaystyle \cos(\omega_0 n)\) \(\displaystyle \pi\sum_{\ell=-\infty}^{\infty}\Big[\delta(\omega-\omega_0-2\pi\ell)+\delta(\omega+\omega_0-2\pi\ell)\Big]\)
    (a) \(\displaystyle \omega_0=\frac{2\pi m}{N}\)
    \[ a_k= \begin{cases} \frac{1}{2}, & k=m,\, m\pm N,\, m\pm 2N,\,\ldots\\ \frac{1}{2}, & k=-m,\, -m\pm N,\, -m\pm 2N,\,\ldots\\ 0, & \text{otherwise} \end{cases} \]
    (b) \(\displaystyle \frac{\omega_0}{2\pi}\) irrational → The signal is aperiodic
    \(\displaystyle \sin(\omega_0 n)\) \(\displaystyle \frac{\pi}{j}\sum_{\ell=-\infty}^{\infty}\Big[\delta(\omega-\omega_0-2\pi\ell)-\delta(\omega+\omega_0-2\pi\ell)\Big]\)
    (a) \(\displaystyle \omega_0=\frac{2\pi r}{N}\)
    \[ a_k= \begin{cases} -\frac{j}{2}, & k=r,\, r\pm N,\, r\pm 2N,\,\ldots\\ \frac{j}{2}, & k=-r,\, -r\pm N,\, -r\pm 2N,\,\ldots\\ 0, & \text{otherwise} \end{cases} \]
    (b) \(\displaystyle \frac{\omega_0}{2\pi}\) irrational → The signal is aperiodic
    \(\displaystyle x[n]=1\) \(\displaystyle 2\pi\sum_{\ell=-\infty}^{\infty}\delta(\omega-2\pi\ell)\) \[ a_k= \begin{cases} 1, & k=0,\, \pm N,\, \pm 2N,\,\ldots\\ 0, & \text{otherwise} \end{cases} \]
    Periodic square wave
    \( x[n]= \begin{cases} 1, & |n|\le N_1\\ 0, & N_1<|n|\le N/2 \end{cases} \)
    \(x[n+N]=x[n]\)
    \(\displaystyle 2\pi\sum_{k=-\infty}^{\infty}a_k\,\delta\!\left(\omega-\frac{2\pi k}{N}\right)\)
    \[ a_k= \begin{cases} \dfrac{\sin\!\left(\dfrac{2\pi k}{N}\left(N_1+\frac{1}{2}\right)\right)}{N\sin\!\left(\dfrac{\pi k}{N}\right)}, & k\ne 0,\, \pm N,\, \pm 2N,\ldots\\[10pt] \dfrac{2N_1+1}{N}, & k=0,\, \pm N,\, \pm 2N,\ldots \end{cases} \]
    \(\displaystyle \sum_{k=-\infty}^{\infty}\delta[n-kN]\) \(\displaystyle \frac{2\pi}{N}\sum_{k=-\infty}^{\infty}\delta\!\left(\omega-\frac{2\pi k}{N}\right)\) \(\displaystyle a_k=\frac{1}{N}\ \text{for all }k\)
    \(\displaystyle a^n u[n],\ \ |a|<1\) \(\displaystyle \frac{1}{1-ae^{-j\omega}}\)
    \( x[n]= \begin{cases} 1, & |n|\le N_1\\ 0, & |n|>N_1 \end{cases} \) \(\displaystyle \frac{\sin\!\left(\omega\left(N_1+\frac{1}{2}\right)\right)}{\sin(\omega/2)}\)
    \( \frac{\sin\left(\frac{\omega_m}{\pi}n\right)}{n} \;=\; \frac{\omega_m}{\pi}\,\text{sinc}\!\left(\frac{\omega_m}{\pi}n\right) \)
    \(0<\omega_m<\pi\)
    \( X(\omega)= \begin{cases} 1, & 0\le |\omega| \le \omega_m\\ 0, & \omega_m<|\omega|\le \pi \end{cases} \)
    \(X(\omega)\) periodic with period \(2\pi\)
    \(\displaystyle \delta[n]\) \(\displaystyle 1\)
    \(\displaystyle u[n]\) \(\displaystyle \frac{1}{1-e^{-j\omega}} + \pi\sum_{k=-\infty}^{\infty}\delta(\omega-2\pi k)\)
    \(\displaystyle \delta[n-n_0]\) \(\displaystyle e^{-j\omega n_0}\)
    Definition: z-Transform

    \[ X(z)=\sum_{n=-\infty}^{\infty}x[n]\,z^{-n}. \]

    Important Continuous Formulas & Tables:

    Definition: Convolution Integral

    \[ y(t)=\int_{-\infty}^{+\infty} x(\tau)\,h_{\tau}(t)\,d\tau \]

    \[ y(t)=x(t)*h(t) \]

    rect_convolution.gif

    Figure 2.3.2: Animation showing the convolution between two rectangular functions.

    Fourier Series (Synthesis and Analysis Equations)

    Synthesis equation

    \[ x(t)=\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \]

    Analysis equation

    \[ a_k=\frac{1}{T}\int_T x(t)e^{-jk\omega_0 t}\,dt =\frac{1}{T}\int_T x(t)e^{-jk\frac{2\pi}{T}t}\,dt \]

    Fourier Transform (Analysis and Synthesis Equations)

    \(x(t)\) → Fourier Transform → \( X(j\omega)=\int_{-\infty}^{+\infty} x(t)\,e^{-j\omega t}\,dt \) → Inverse Fourier Transform → \( x(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty} X(j\omega)\,e^{j\omega t}\,d\omega \)

    Laplace Transform \[ X(s)\triangleq \int_{-\infty}^{+\infty} x(t)e^{-st}\,dt \]

    Laplace Transform Properties

    \[ X(s)=\int_{-\infty}^{+\infty} x(t)\,e^{-st}\,dt \]

    Time Laplace
    \(y(t)=x(t-t_0)\) \(Y(s)=e^{-st_0}X(s)\) same ROC
    \(y(t)=e^{s_0 t}\,x(t)\) \(Y(s)=X(s-s_0)\) shift ROC by \(s_0\)
    \(y(t)=x(t)*h(t)\) \(Y(s)=X(s)\cdot H(s)\) ROC of \(Y\) includes \(ROC_X\cap ROC_H\) (intersection)
    \(y(t)=\dfrac{dx(t)}{dt}\) \(Y(s)=s\,H(s)\)
    \(y(t)=-t\,x(t)\) \(Y(s)=\dfrac{d}{ds}X(s)\)
    \(y(t)=\displaystyle\int_{-\infty}^{t}x(z)\,dz\) \(Y(s)=\dfrac{1}{s}X(s)\)

    If \(x(t)=0\) for \(t<0\), \(x(0^+)=\displaystyle\lim_{s\to\infty} sX(s)\) Initial Value Theorem

    If \(x(t)=0\) for \(t<0\), \(\displaystyle\lim_{t\to\infty}x(t)=\lim_{s\to 0} sX(s)\)

    Laplace Transforms of Elementary Functions
    Signal Transform ROC
    \(\delta(t)\) \(1\) All \(s\)
    \(u(t)\) \(\dfrac{1}{s}\) \(\operatorname{Re}\{s\}>0\)
    \(-u(-t)\) \(\dfrac{1}{s}\) \(\operatorname{Re}\{s\}<0\)
    \(e^{-at}u(t)\) \(\dfrac{1}{s+a}\) \(\operatorname{Re}\{s\}>-a\)
    \(-e^{-at}u(-t)\) \(\dfrac{1}{s+a}\) \(\operatorname{Re}\{s\}<-a\)
    \(\delta(t-T)\) \(e^{-sT}\) All \(s\)
    \([\cos \omega_0 t]u(t)\) \(\dfrac{s}{s^2+\omega_0^2}\) \(\operatorname{Re}\{s\}>0\)
    \([\sin \omega_0 t]u(t)\) \(\dfrac{\omega_0}{s^2+\omega_0^2}\) \(\operatorname{Re}\{s\}>0\)
    \([e^{-at}\cos \omega_0 t]u(t)\) \(\dfrac{s+a}{(s+a)^2+\omega_0^2}\) \(\operatorname{Re}\{s\}>-a\)
    \([e^{-at}\sin \omega_0 t]u(t)\) \(\dfrac{\omega_0}{(s+a)^2+\omega_0^2}\) \(\operatorname{Re}\{s\}>-a\)
    \(u_n(t)=\dfrac{d^n\delta(t)}{dt^n}\) \(s^n\) All \(s\)
    \(u_{-n}(t)=u(t)*\cdots*u(t)\) (n times) \(\dfrac{1}{s^n}\) \(\operatorname{Re}\{s\}>0\)
    • Was this article helpful?