6.3: Hyperbolic Functions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Function Result

acosh(x)

Inverse hyperbolic cosine; cosh –1 (x).

acoth(x)

Inverse hyperbolic cotangent; coth –1 (x).

acsch(x)

Inverse hyperbolic cosecant; csch –1 (x).

asech(x)

Inverse hyperbolic secant; sech –1 (x).

asinh(x)

Inverse hyperbolic sine; sinh –1 (x).

atanh(x)

Inverse hyperbolic tangent; tanh –1 (x).

cosh(x)

Hyperbolic cosine; cosh(x).

coth(x)

Hyperbolic cotangent; cosh(x)/sinh(x).

csch(x)

Hyperbolic cosecant; 1/sinh(x).

sech(x)

Hyperbolic secant; 1/cosh(x).

sinh(x)

Hyperbolic sine; sinh(x).

tanh(x)

Hyperbolic tangent; sinh(x)/cosh(x).

6.3: Hyperbolic Functions is shared under a CC BY 1.3 license and was authored, remixed, and/or curated by Brian Vick, Virginia Tech.