Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Engineering LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Set as Cover Page of Book
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
  • Include attachments
Searching in
About 1 results
  • https://eng.libretexts.org/Courses/Arkansas_Tech_University/Discrete-Time_Signal_Processing/05%3A_Z-Transform_and_Discrete_Time_System_Design/5.06%3A_Region_of_Convergence_for_the_Z-Transform
    \[|X(z)|=\left|\sum_{n=-\infty}^{\infty} x[n] z^{-n}\right| \leq \sum_{n=-\infty}^{\infty}\left|x[n] z^{-n}\right|=\sum_{n=-\infty}^{\infty}|x[n]|(|z|)^{-n} \nonumber \] \[N(z) \leq C_{1} \sum_{n=-\in...\[|X(z)|=\left|\sum_{n=-\infty}^{\infty} x[n] z^{-n}\right| \leq \sum_{n=-\infty}^{\infty}\left|x[n] z^{-n}\right|=\sum_{n=-\infty}^{\infty}|x[n]|(|z|)^{-n} \nonumber \] \[N(z) \leq C_{1} \sum_{n=-\infty}^{-1} r_{1}^{n}(|z|)^{-n}=C_{1} \sum_{n=-\infty}^{-1}\left(\frac{r_{1}}{|z|}\right)^{n}=C_{1} \sum_{k=1}^{\infty}\left(\frac{|z|}{r_{1}}\right)^{k} \nonumber \] The Region of Convergence is the area in the pole/zero plot of the transfer function in which the function exists.

Support Center

How can we help?