# 7.4.4.1: Energy Equation in Accelerated Coordinate with Uniform Flow

[ "article:topic" ]

One of the way to simplify the general equation (105) is to assume uniform flow. In that case the time derivative term vanishes and equation (105) can be written as

$\label{ene:eq:AccCVgeneralss1} \dot{Q} - \dot{W} = \int_{cv} \left( h + \dfrac{U^2}{2\dfrac{}{}} + a_x\,x + a_y\, y + (a_z + g) - z\, \dfrac{\omega^2 \,r^2}{2} \right) U_{rn}\, \rho\,dA\\ \nonumber + \int_{cv} P\,U_{bn} \,dA \tag{106}$
$\label{ene:eq:ene:AccCVgeneralss} \dot{Q} - \dot{W} = \left( h + \dfrac ParseError: invalid DekiScript (click for details) Callstack: at (Textbook_Maps/Chemical_Engineering/Map:_Fluid_Mechanics_(Bar-Meir)/07:_Energy_Conservation/7.4:_Energy_Equation_in_Accelerated_System/7.4.4:_Simplified_Energy_Equation_in_Accelerated_Coordinate/7.4.4.1:_Energy_Equation_in_Accelerated_Coordinate_with_Uniform_Flow), /content/body/p[2]/span, line 1, column 1  _{rn}\, \rho\,dA\\ + \int_{cv} P\,{\overline{U}}_{bn} \,dA \tag{107}$