Skip to main content
Engineering LibreTexts

13.2: History

The study of multi–phase flow started for practical purposes after World War II. Initially the models were using simple assumptions. For simple models,there are two possibilities (1) the fluids/materials are flowing in well homogeneous mixed (where the main problem to find the viscosity), (2) the fluids/materials are flowing separately where the actual total loss pressure can be correlated based on the separate pressure loss of each of the material. If the pressure loss was linear then the total loss will be the summation of the two pressure losses (of the lighter liquid (gas) and the heavy liquid). Under this assumption the total is not linear and experimental correlation was made. This was suggested by Lockhart and Martinelli who use a model where the flow of the two fluids are independent of each other. They postulate that there is a relationship between the pressure loss of a single phase and combine phases pressure loss as a function of the pressure loss of the other phase. It turned out this idea provides a good crude results in some cases. Researchers that followed Lockhart and Martinelli looked for a different map for different combination of phases. When it became apparent that specific models were needed for different situations, researchers started to look for different flow regimes and provided different models. Also the researchers looked at the situation when the different regimes are applicable. Which leads to the concept of flow regime maps. Taitle and Duckler suggested a map based on five dimensionaless groups which are considered as the most useful today. However, Taitle and Duckler's map is not universal and it is only applied to certain liquid–gas conditions. For example, Taitle–Duckler's map is not applicable for microgravity

Contributors

  • Dr. Genick Bar-Meir. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or later or Potto license.

.