14.5: Mechanics of Manipulating a Function of State
- Page ID
- 542
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Given that \(f(x, y, z)\) is any state function that characterizes the system and \((x, y, z)\) is a set of independent variable properties of that system, we know that any change \(\Delta \mathrm{f}\) will be only a function of the value of " \(f\) " at the final and initial states,
\[\Delta f=f_2-f_1=f\left(x_2, y_2, z_2\right)-f\left(x_1, y_1, z_1\right)\]
Since \(f=f(x, y, z)\), we can mathematically relate the total differential change (df) to the partial derivatives \(\dfrac{\partial f}{\partial x}\), \(\dfrac{\partial f}{\partial y}\), and \(\dfrac{\partial f}{\partial z}\) of the function, as follows:
\[d f=\left(\dfrac{\partial f}{\partial x}\right)_{y, z} d x+\left(\dfrac{\partial f}{\partial y}\right)_{x, z} d y+\left(\dfrac{\partial f}{\partial z}\right)_{x, y} d z\]
where, in general: \(\left(\dfrac{\partial f}{\partial x}\right)_{y, z}=\) the change of f with respect to x , while y and z are unchanged.
If we want to come up with the total change, \(\Delta f\), of a property (we want to go from \(\PageIndex{2}\) to \(\PageIndex{1}\), we integrate the expression in \(\PageIndex{2}\) to get:
\[\Delta f=f_2-f_1=\int_{x_1}^{x_2}\left(\dfrac{\partial f}{\partial x}\right)_{y, z} d x+\int_{y_1}^{y_2}\left(\dfrac{\partial f}{\partial y}\right)_{x, z} d y+\int_{z_1}^{z_2}\left(\dfrac{\partial f}{\partial x}\right)_{x, y} d z\]
Let us visualize this with an example. For a system of constant composition, its thermodynamic state is completely defined when two properties of the system are fixed. Let us say we have a pure component at a fixed pressure ( P ) and temperature ( T ). Hence, all other thermodynamic properties, for example, enthalpy \((H)\), are fixed as well. Since \(H\) is only a function of \(P\) and \(T\), we write:
\[H=H(P, T)\]
and hence, applying 6.2, any differential change in enthalpy can be computed as:
\[d H=\left(\dfrac{\partial H}{\partial P}\right)_T d P+\left(\dfrac{\partial H}{\partial T}\right)_P d T\]
The total change in enthalpy of the pure-component system becomes:
\[\Delta H=H_2-H_1=\int_{P_1}^{P_2}\left(\dfrac{\partial H}{\partial P}\right)_T d P+\int_{T_1}^{T_2}\left(\dfrac{\partial H}{\partial T}\right)_P d T\]
Now we are ready to spell out the exactness condition, which is the mathematical condition for a function to be a state function. The fact of the matter is, that for a function to be a state function — i.e., its integrated path shown in \(\PageIndex{3}\) is only a function of the end states, as shown in \(\PageIndex{1}\) — its total differential must be exact. In other words, if the total differential shown in \(\PageIndex{2}\) is exact, then f(x,y,z) is a state function. How do we know if a total differential is exact or not?
Given a function Ψ(x,y,z),
\[d \Psi=M(x, y, z) d x+N(x, y, z) d y+Q(x, y, z) d z\]
where:
\[M(x, y, z)=\left(\dfrac{\partial \Psi}{\partial x}\right)_{y, z}\]
\[N(x, y, z)=\left(\dfrac{\partial \Psi}{\partial y}\right)_{x, z}\]
\[Q(x, y, z)=\left(\dfrac{\partial \Psi}{\partial z}\right)_{x, y}\]
we say that \(d \Psi\) is an exact differential and consequently \(\psi(x, y, z)\) a state function if all the following conditions are satisfied:
\[\left(\dfrac{\partial M}{\partial y}\right)_{x, z}=\left(d\frac{\partial N}{\partial x}\right)_{y, z}\]
\[\left(\dfrac{\partial N}{\partial z}\right)_{x, y}=\left(\dfrac{\partial Q}{\partial y}\right)_{x, z}\]
\[\left(\dfrac{\partial M}{\partial z}\right)_{x, y}=\left(\dfrac{\partial Q}{\partial x}\right)_{y, z}\]
The above three Equations are called the exactness condition.
Contributors and Attributions
Prof. Michael Adewumi (The Pennsylvania State University). Some or all of the content of this module was taken from Penn State's College of Earth and Mineral Sciences' OER Initiative.