# 4.3.5.1: Ideal Gas in Varying Gravity

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

In physics, it was explained that the gravity is a function of the distance from the center of the plant/body. Assuming that the pressure is affected by this gravity/body force. The gravity force is reversely proportional to $$r^2$$. The gravity force can be assumed that for infinity, $$r \rightarrow \infty$$ the pressure is about zero. Again, equation (11) can be used (semi one directional situation) when $$r$$ is used as direction and thus

$\dfrac{\partial P }{\partial r} = - \rho \dfrac {G}{r^2} \label{static:eq:gravityGchange}$
where $$G$$ denotes the general gravity constant. The regular method of separation is employed to obtain

$\int_{P_{b}}^{P} \dfrac{dP}{P} = - \dfrac {G}{RT} \int_{r_{b}} ^r \dfrac {dr}{r^2} \label{static:eq:gravityGchangeB}$
where the subscript $$b$$ denotes the conditions at the body surface. The integration of equation (111) results in

$\ln \dfrac{P}{P_{b}} = - \dfrac {G}{RT} \left( \dfrac{1}{r_{b}}-\dfrac{1}{r}\right) \label{static:eq:gravityGchangeA}$
Or in a simplified form as

$\dfrac{\rho}{\rho_{b}} = \dfrac{P}{P_{b}} = \text{ e} ^{ -\dfrac{G}{RT} \dfrac{r-r_{b}}{r\,r_{b}} } \label{static:eq:gravityGchangeF}$
Equation (113) demonstrates that the pressure is reduced with the distance. It can be noticed that for $$r \rightarrow r_{b}$$ the pressure is approaching $$P \rightarrow P_{b}$$. This equation confirms that the density in outer space is zero $$\rho(\infty) = 0$$. As before, equation (113) can be expanded in Taylor series as

$\dfrac{\rho}{\rho_{b}} = \dfrac{P}{P_{b}} = \overbrace{1 - \dfrac{G\,\left( r-r_b\right) }{R\,T} }^{\text{standard}} - \overbrace{\dfrac{\left( 2\,G\,{R\,T}+ {G}^{2}\,r_b\right) \,{\left( r-r_b\right) }^{2}}{2\,r_b\,{(R\,T)}^{2}} +\cdots}^{\text{correction factor}} \label{static:eq:gravityGchangeFexpended}$

Notice that $$G$$ isn't our beloved and familiar $$g$$ and also that $$G\,r_b/RT$$ is a dimensionless number (later in the Chapter 9 a discution about the definition of the dimensionless number and its meaning).