Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Engineering LibreTexts

8.2: Mass Conservation

( \newcommand{\kernel}{\mathrm{null}\,}\)

Fig. 8.1 The mass balance on the infinitesimal control volume.

Fluid flows into and from a three dimensional infinitesimal control volume depicted in Figure 8.1. At a specific time this control volume can be viewed as a system. The mass conservation for this infinitesimal small system is zero thus

DDtVρdV=0

However for a control volume using Reynolds Transport Theorem (RTT), the following can be written

DDtVρdV=ddtVρdV+AUrnρdA=0

For a constant control volume, the derivative can enter into the integral (see also for the divergence theorem in the appendix A.1.2) on the right hand side and hence

dρdtdVVdρdtdV+AUrnρdA=0

The first term in equation (3) for the infinitesimal volume is expressed, neglecting higher order derivatives, as

VdρdtdV=dρdtdVdxdydz+0f(d2ρdt2)+

The second term in the LHS of equation is expressed as

AUrnρdA=dAyzdydz[(ρUx)|x(ρUx)|x+dx]+dAxzdxdz[(ρUy)|y(ρUy)|y+dy]+dAxzdxdy[(ρUz)|z(ρUz)|z+dz]

The difference between point x and x+dx can be obtained by developing Taylor series as

(ρUx)|x+dx=(ρUx)|x+(ρUx)x|xdx

The same can be said for the y and z coordinates. It also can be noticed that, for example, the operation, in the x coordinate, produces additional dx thus a infinitesimal volume element dV is obtained for all directions. The combination can be divided by dxdydz and simplified by using the definition of the partial derivative in the regular process to be

AUrnρdA=[(ρUx)x+(ρUy)y+(ρUz)z]

Combining the first term with the second term results in the continuity equation in Cartesian coordinates as

ρt+ρUxx+ρUyy+ρUzz=0

Cylindrical Coordinates

Fig. 8.2 The mass conservation in cylindrical coordinates.

The same equation can be derived in cylindrical coordinates. The net mass change, as depicted in Figure 8.2, in the control volume is

d˙m=ρtdvdrdzrdθ

The net mass flow out or in the ˆr direction has an additional term which is the area change compared to the Cartesian coordinates. This change creates a different differential equation with additional complications. The change is

(flux in rr direction)=dθdz(rρUr(rρUr+ρUrrrdr))

The net flux in the r direction is then

 net flux in the rr direction=dθdzρUrrrdr

Note that the r is still inside the derivative since it is a function of r, e.g. the change of r with r. In a similar fashion, the net flux in the z coordinate be written as

net flux in z direction=rdθdr(ρUz)zdz

The net change in the

θ direction is then net flux in θ direction=drdzρUθθdθ

Combining equations (11) and dividing by infinitesimal control volume, drrdθdz, results in

total net flux =(1r(ρUrr)r+ρUzrz+ρUθθ)

Combining equation (14) with the change in the control volume divided by infinitesimal control volume, drrdθdz yields

Continuity in Cylindrical Coordinates

ρt+1r(rρUr)r+1rρUθθ+ρUzz=0

Carrying similar operations for the spherical coordinates, the continuity equation becomes

Continuity in Spherical Coordinates

ρt+1r2(r2ρUr)r+1rsinθ(ρUθsinθ)θ+1rsinθρUϕz=0

The continuity equations (8) and can be expressed in different coordinates. It can be noticed that the second part of these equations is the divergence (see the Appendix A.1.2 page Hence, the continuity equation can be written in a general vector form as

Continuity Equation

ρt+(ρUU)=0

Advance Material

The mass equation can be written in index notation for Cartesian coordinates. The index notation really does not add much to the scientific understanding. However, this writing reduce the amount of writing and potentially can help the thinking about the problem or situation in more conceptional way. The mass equation (see in the appendix for more information on the index notation) written as

ρt+(ρU)ixi=0

Where i is is of the i, j, and k. Compare to equation (8). Again remember that the meaning of repeated index is summation.

End Advance Material
The use of these equations is normally combined with other equations (momentum and or energy equations). There are very few cases where this equation is used on its own merit. For academic purposes, several examples are constructed here.

Template:HideTOC

Contributors and Attributions

  • Dr. Genick Bar-Meir. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or later or Potto license.


This page titled 8.2: Mass Conservation is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by via source content that was edited to the style and standards of the LibreTexts platform.


This page titled 8.2: Mass Conservation is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Genick Bar-Meir via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?