Skip to main content
Engineering LibreTexts

2.5: Nomenclature

  • Page ID
    29273
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Dimensionless numbers

    Ar

    Archimedes number

    -

    Arp

    Archimedes number based on terminal settling velocity

    -

    Ba

    Bagnold number

    -

    Ct

    Cát number

    -

    D*

    The Bonneville parameter or dimensionless particle diameter

    -

    Fr

    Froude number

    -
    \(\ \widehat{\mathbf{F}} \mathbf{r}\)

    Froude number squared

    -

    Frfl

    Froude number pipe flow

    -

    \(\ \widehat{\mathbf{F}} \mathbf{r}_{\mathbf{fl}}\)

    Froude number pipe flow squared

    -

    Frp

    Froude number particle based on terminal settling velocity

    -

    \(\ \widehat{\mathbf{F}} \mathbf{r}_{\mathbf{p}}\)

    Froude number particle based on terminal settling velocity squared

    -

    La

    Lắng number

    -

    P

    Rouse number

    -

    Re

    Reynolds number

    -

    Rep

    Particle Reynolds number based on terminal settling velocity

    -

    Re*

    Boundary Reynolds number

    -

    Refl

    Reynolds number pipe flow

    -

    Ri

    Richardson number

    -

    Stk

    Stokes number

    -

    Th

    Thủy number

    -

    \(\ \widehat{\mathbf{T}} \mathbf{h}\)

    Thủy number cubed

    -

    Thls

    Thủy number based on line speed in pipe flow

    -

    Thfv

    Thủy number based on friction velocity in pipe flow

    -

    Thp

    Thủy number based on terminal settling velocity

    -

    θ

    Shields parameter

    -

    Symbols

    Cvs

    Volumetric spatial concentration

    -

    Cvt

    Volumetric transport (delivered) concentration

    -

    Cvr

    Relative volumetric concentration

    -

    Cvb

    Volumetric spatial concentration bed

    -

    Cx

    Durand drag coefficient

    -

    d

    Particle diameter

    m

    d15

    Particle diameter 15% passing

    m

    d50

    Particle diameter 50% passing

    m

    d85

    Particle diameter 85% passing

    m

    Dp

    Pipe diameter

    m

    F

    Force

    N

    Fshear

    Shear force on bed

    N

    Fgravity

    Submerged gravity force on a particle

    N

    g

    Gravitational constant, 9.81 m/sec2

    m/s2

    ks

    The bed roughness (often a function of the particle diameter)

    m

    ks+

    Roughness Reynolds number

    -

    l0

    Characteristic dimension of flow

    m

    L

    Characteristic length of object or flow

    m

    m

    Mass of particle

    kg

    Qm

    Volume flow mixture through pipe

    m3/s

    Qs

    Volume flow solids through pipe

    m3/s

    Rsd

    Relative submerged density

    -

    r

    Coordinate perpendicular to the velocity

    m

    SG

    Specific gravity

    -

    Sm

    Specific gravity solids

    -

    Sm

    Specific gravity mixture

    -

    t0

    Relaxation time

    -

    T

    Temperature

    C

    u

    Velocity of fluid

    m/s

    u0

    Velocity of fluid

    m/s

    u*

    Friction velocity

    m/s

    v

    Characteristic velocity of object

    m/s

    vls

    Line speed

    m/s

    vsl

    Slip velocity

    m/s

    vt

    Terminal settling velocity

    m/s

    Vm

    Volume pipe segment

    m3

    Vs

    Volume solids in pipe segment

    m3

    x

    Length direction

    m

    y

    Distance to the wall

    m

    y+

    Distance to the wall Reynolds number

    -

    β

    Hindered settling power (Richardson & Zaki)

    -

    β

    Diffusivity factor

    -

    δv

    Thickness of the viscous sub layer

    m

    δv+

    Dimensionless thickness of viscous sub layer

    -
    \(\ \mathbf{\dot{\gamma}}\)

    Velocity gradient

    1/s

    κ

    Von Karman constant (about 0.4)

    -

    κC

    Concentration distribution coefficient

    -

    λl

    Darcy-Weisbach friction factor

    -

    λ

    Linear concentration according to Bagnold

    -

    \(\ \mathbf{\tau}_{\mathbf{1} \mathbf{2}}\)

    Bed shear stress

    kPa

    νl

    Kinematic viscosity

    m2/s

    ρl

    Density of the liquid

    kg/m3

    ρs

    Density of solids

    kg/m3

    ρm

    Density of mixture

    kg/m3

    ξ

    Slip ratio

    -

    μl

    Dynamic viscosity

    N·s/m2

    ηl

    Dynamic viscosity

    N·s/m2

    φ

    Angle of internal friction

    rad

    δ

    Angle of external friction

    rad


    This page titled 2.5: Nomenclature is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Sape A. Miedema (TU Delft Open Textbooks) via source content that was edited to the style and standards of the LibreTexts platform.