Skip to main content
Engineering LibreTexts

3.2: The Darcy-Weisbach Friction Factor

  • Page ID
    29284
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The value of the wall friction factor \(\ \mathrm{\lambda_{l}}\) depends on the Reynolds number:

    \[\ \mathrm{R} \mathrm{e}=\frac{\mathrm{v}_{\mathrm{l s}} \cdot \mathrm{D}_{\mathrm{p}}}{v_{\mathrm{l}}}=\frac{\rho_{\mathrm{l}} \cdot \mathrm{v}_{\mathrm{l} \mathrm{s}} \cdot \mathrm{D}_{\mathrm{p}}}{\mu_{\mathrm{l}}}\]

    For laminar flow (\(Re<2320\)) the value of \(\ \lambda_{l}\) can be determined according to Poiseuille:

    \[\ \lambda_{1}=\frac{64}{\mathrm{Re}}\]

    For turbulent flow (\(Re>2320\)) the value of \(\ \mathrm{\lambda_{l}}\) depends not only on the Reynolds number but also on the relative roughness of the pipe \(\ \mathrm{\varepsilon}\)/Dp, which is the absolute roughness \(\ \mathrm{\varepsilon}\) divided by the pipe diameter Dp. A general implicit equation for \(\ \mathrm{\lambda_{l}}\) is the Colebrook-White (1937) equation:

    \[\ \lambda_{1}=\frac{1}{\left(2 \cdot \log _{10}\left(\frac{2.51}{\operatorname{Re} \cdot \sqrt{\lambda_{1}}}+\frac{0.27 \cdot \varepsilon}{D_{p}}\right)\right)^{2}}\]

    For very smooth pipes the value of the relative roughness \(\ \mathrm{\varepsilon}\)/Dp is almost zero, resulting in the Prandl & von Karman equation:

    \[\ \lambda_{1}=\frac{1}{\left(2 \cdot \log _{10}\left(\frac{2.51}{\operatorname{Re} \cdot \sqrt{\lambda_{1}}}\right)\right)^{2}}\]

    At very high Reynolds numbers the value of \(\ 2.51 /(\mathrm{Re} \cdot \sqrt{\lambda_{1}})\) is almost zero, resulting in the Nikuradse (1933) equation:

    \[\ \lambda_{1}=\frac{1}{\left(2 \cdot \log _{10}\left(\frac{0.27 \cdot \varepsilon}{D_{p}}\right)\right)^{2}}=\frac{5.3}{\left(2 \cdot \ln \left(\frac{0.27 \cdot \varepsilon}{D_{p}}\right)\right)^{2}}\]

    Because equations (3.2-3) and (3.2-4) are implicit, for smooth pipes approximation equations can be used. For a Reynolds number between 2320 and 105 the Blasius equation gives a good approximation:

    \[\ \lambda_{1}=0.3164 \cdot\left(\frac{1}{R e}\right)^{0.25}\]

    For a Reynolds number in the range of 105 to 108 the Nikuradse (1933) equation gives a good approximation:

    \[\ \lambda_{\mathrm{l}}=\mathrm{0 . 0 0 3 2}+\frac{\mathrm{0 . 2 2 1}}{\mathrm{R e}^{\mathrm{0 . 2 3 7}}}\]

    Figure 3.2-1 gives the so called Moody (1944) diagram, in this case based on the Swamee Jain (1976) equation.

    Figure 3.2-1: The Moody diagram determined with the Swamee Jain equation.

    Screen Shot 2020-07-07 at 12.47.13 PM.png

    Over the whole range of Reynolds numbers above 2320 the Swamee Jain (1976) equation gives a good approximation:

    \[\lambda_{1}=\dfrac{1.325}{\left(\ln \left(\dfrac{\varepsilon}{3.7 \cdot \mathrm{D}_{\mathrm{p}}}+\dfrac{5.75}{\mathrm{Re}^{0.9}}\right)\right)^{2}}=\frac{0.25}{\left(\log _{10}\left(\dfrac{\varepsilon}{3.7 \cdot \mathrm{D}_{\mathrm{p}}}+\dfrac{5.75}{\mathrm{Re}^{0.9}}\right)\right)^{2}} \]


    This page titled 3.2: The Darcy-Weisbach Friction Factor is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Sape A. Miedema (TU Delft Open Textbooks) via source content that was edited to the style and standards of the LibreTexts platform.