Skip to main content
Engineering LibreTexts

9.3: The Tear Type and the Chip Type

  • Page ID
    29473
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Similar to the derivation of equation (8-127) for the occurrence of tensile failure under atmospheric conditions, equation (9-19) can be derived for the occurrence of tensile failure under hyperbaric conditions. Under hyperbaric conditions equation (9-19) will almost always be true, because of the terms with rand rwhich may become very big (positive). So tensile failure will not be considered for hyperbaric conditions.

    Screen Shot 2020-08-23 at 11.18.44 PM.png
    Figure 9-13: The Tear Type cutting mechanism in rock under hyperbaric conditions.
    Screen Shot 2020-08-23 at 11.19.39 PM.png
    Figure 9-14: The Chip Type cutting mechanism in rock under hyperbaric conditions.

    \[\ \mathrm{c}\cdot \left( \begin{array}{left}\mathrm{\frac{r\cdot \frac{\sin(\beta)\cdot\cos(\delta)}{\sin(\alpha)}+r_2\cdot\frac{\sin(\beta)\cdot sin(\delta)}{sin(\alpha)}}{sin(\alpha+\beta+\delta+\varphi)}}\\ \mathrm{+\frac{+r_1\cdot sin(\alpha+\beta+\delta)}{sin(\alpha+\beta+\delta+\varphi)} }\\ +\mathrm{\frac{-cos(\alpha+\beta+\delta)-sin(\alpha+\beta+\delta+\varphi)}{sin(\alpha+\beta+\delta+\varphi)}}\end{array} \right)\cdot\mathrm{\left(\frac{1-sin(\varphi)}{cos(\varphi)} \right)>\sigma_T}\tag{9-19} \]


    This page titled 9.3: The Tear Type and the Chip Type is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Sape A. Miedema (TU Delft Open Textbooks) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.