Skip to main content
Engineering LibreTexts

4.12: Exercises

  • Page ID
    17059
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Exercise \(\PageIndex{1}\)

    The “rank” of a word is its position in a list of words sorted by frequency: the most common word has rank 1, the second most common has rank 2, etc.

    Zipf’s law describes a relationship between the ranks and frequencies of words in natural languages (http://en.Wikipedia.org/wiki/Zipf's_law). Specifically, it predicts that the frequency, f, of the word with rank r is:

    \[ f = c r^{-s} \nonumber \]

    where s and c are parameters that depend on the language and the text. If you take the logarithm of both sides of this equation, you get:

    \[ \log{f} = \log{c} - s \log{r} \nonumber \]

    So if you plot log f versus log r, you should get a straight line with slope −s and intercept log c.

    Write a program that reads a text from a file, counts word frequencies, and prints one line for each word, in descending order of frequency, with log f and log r. Use the graphing program of your choice to plot the results and check whether they form a straight line. Can you estimate the value of s?

    To make the plots, you might have to install matplotlib (see http://matplotlib.sourceforge.net/).

    Solution:

    http://thinkpython.com/code/zipf.py


    4.12: Exercises is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Allen B. Downey.

    • Was this article helpful?