Skip to main content
Engineering LibreTexts

10.6: Exercises

  • Page ID
    25317
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    10.6.1: Analysis Problems

    1. For the circuit of Figure \(\PageIndex{1}\), determine \(I_D\) and \(V_{DS}\). \(I_{DSS}\) = 40 mA, \(V_{GS(off)}\) = −4 V, \(V_{DD}\) = 26 V, \(V_{GG}\) = −2 V, \(R_G\) = 220 k\(\Omega\), \(R_D\) = 1.2 k\(\Omega\).

    2. For the circuit of Figure \(\PageIndex{1}\), determine \(I_D\) and \(V_{DS}\). \(I_{DSS}\) = 20 mA, \(V_{GS(off)}\) = −3 V, \(V_{DD}\) = 22 V, \(V_{GG}\) = −1 V, \(R_G\) = 390 k\(\Omega\), \(R_D\) = 1 k\(\Omega\).

    clipboard_ef6d801f12927575ba8a8109d27f31983.png

    Figure \(\PageIndex{1}\)

    3. For the circuit of Figure \(\PageIndex{2}\), determine \(I_D\), \(V_G\) and \(V_D\). \(I_{DSS}\) = 24 mA, \(V_{GS(off)}\) = −6 V, \(V_{DD}\) = 36 V, \(R_G\) = 220 k\(\Omega\), \(R_S\) = 2 k\(\Omega\), \(R_D\) = 1.8 k\(\Omega\).

    4. For the circuit of Figure \(\PageIndex{2}\), determine \(I_D\), \(V_S\) and \(V_{DS}\). \(I_{DSS}\) = 18 mA, \(V_{GS(off)}\) = −3 V, \(V_{DD}\) = 30 V, \(R_G\) = 270 k\(\Omega\), \(R_S\) = 2.7 k\(\Omega\), \(R_D\) = 3.3 k\(\Omega\).

    clipboard_e05449af127e317abfa1302d7d6ed48e1.png

    Figure \(\PageIndex{2}\)

    5. For Figure \(\PageIndex{3}\), determine \(I_D\), \(V_G\) and \(V_D\). \(I_{DSS}\) = 16 mA, \(V_{DD}\) = 25 V, \(V_{GS(off)}\) = −3 V, \(V_{SS}\) = −6 V, \(R_G\) = 560 k\(\Omega\), \(R_S\) = 2 k\(\Omega\), \(R_D\) = 3.6 k\(\Omega\).

    6. For Figure \(\PageIndex{3}\), determine \(I_D\), and \(V_{DS}\). \(I_{DSS}\) = 16 mA, \(V_{DD}\) = 25 V, \(V_{GS(off)}\) = −3 V, \(V_{SS}\) = −9 V, \(R_G\) = 680 k\(\Omega\), \(R_S\) = 2 k\(\Omega\), \(R_D\) = 2.7 k\(\Omega\).

    clipboard_eba27e355249c377064b296ae27a1fa6d.png

    Figure \(\PageIndex{3}\)

    7. For Figure \(\PageIndex{4}\), determine \(I_D\), \(V_G\) and \(V_D\). \(I_{DSS}\) = 16 mA, \(V_{DD}\) = 25 V, \(V_{GS(off)}\) = −3 V, \(V_{EE}\) = −9 V, \(R_G\) = 810 k\(\Omega\), \(R_E\) = 2 k\(\Omega\), \(R_D\) = 2.7 k\(\Omega\).

    8. For the circuit of Figure \(\PageIndex{4}\), determine \(I_D\) and \(V_{DS}\). \(I_{DSS}\) = 40 mA, \(V_{GS(off)}\) = −4 V, \(V_{DD}\) = 30 V, \(V_{EE}\) = −6 V, \(R_G\) = 750 k\(\Omega\), \(R_E\) = 500 \(\Omega\), \(R_D\) = 1.8 k\(\Omega\).

    10.6.2: Design Problems

    9. Using the circuit of Figure \(\PageIndex{2}\), determine a value for \(R_S\) to set \(I_D\) to 4 mA. \(I_{DSS}\) = 10 mA, \(V_{GS(off)}\) = −2 V, \(V_{DD}\) = 20 V, \(R_G\) = 430 k\(\Omega\), \(R_D\) = 1.8 k\(\Omega\).

    10. Using the circuit of Figure \(\PageIndex{1}\), determine a value for \(V_{GG}\) to set \(I_D\) to 2 mA. \(I_{DSS}\) = 10 mA, \(V_{GS(off)}\) = −4 V, \(V_{DD}\) = 28 V, \(R_G\) = 470 k\(\Omega\), \(R_D\) = 4.7 k\(\Omega\).

    11. Using the circuit of Figure \(\PageIndex{4}\), determine a value for \(R_E\) to set \(I_D\) to 4 mA. \(I_{DSS}\) = 18 mA, \(V_{GS(off)}\) = −3 V, \(V_{DD}\) = 25 V, \(V_{EE}\) = −12 V, \(R_G\) = 330 k\(\Omega\), \(R_D\) = 2.2 k\(\Omega\).

    clipboard_e6740db16ac5121b652841a9164c5cc5d.png

    Figure \(\PageIndex{4}\)

    12. Using the circuit of Figure \(\PageIndex{4}\), determine values for \(R_E\) and \(R_D\) to set \(I_D\) to 5 mA and \(V_D\) to 6 V. \(I_{DSS}\) = 20 mA, \(V_{GS(off)}\) = −4 V, \(V_{DD}\) = 32 V, \(V_{EE}\) = −10 V, \(R_G\) = 390 k\(\Omega\).

    10.6.3: Challenge Problems

    13. Following the derivation of Equation 10.4.2, derive Equation 10.4.4.

    14. Using the circuit of Figure \(\PageIndex{3}\), determine values for \(R_S\) and \(V_{SS}\) to set \(I_D\) to 4 mA. \(I_{DSS}\) = 16 mA, \(V_{GS(off)}\) = −4 V, \(V_{DD}\) = 30 V, \(R_G\) = 680 k\(\Omega\), \(R_D\) = 2 k\(\Omega\).

    10.6.4: Computer Simulation Problems

    15. Perform a DC operating point simulation on the circuit of Problem 7 to verify the results. The J111 will be sufficient.

    16. Perform a DC operating point simulation on the circuit of Problem 10 to verify the results. The J111 will be sufficient.

    10.6.5: Department of Marginal Utility

    clipboard_ecf5ad0ff55a608a3c648e391b9c3fe20.png

    Figure \(\PageIndex{5}\): Combination Bias Surface Plot.

    The graphs of Figure 10.4.13 represent three slices from this surface.

    Looks cool, but...


    This page titled 10.6: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.