Skip to main content
Engineering LibreTexts

1.3: Review of Classical Waves

  • Page ID
    49300
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    A wave is a periodic oscillation. It is convenient to describe waves using complex numbers. For example consider the function

    \[ \psi (x) = e^{ik_{0}x} \nonumber \]

    where x is position, and \(k_{0}\) is a constant known as the wavenumber. This function is plotted in Figure 1.3.1 on the complex plane as a function of position, x. The phase of the function

    \[ \phi = k_{0}x \nonumber \]

    is the angle on the complex plane.

    Screenshot 2021-04-13 at 21.36.57.png
    Figure \(\PageIndex{1}\): A standing wave with its phase plotted on the complex plane.

    The wavelength is defined as the distance between spatial repetitions of the oscillation. This corresponds to a phase change of \(2\pi \). From Equations 1.3.1 and 1.3.2 we get

    \[ k_{0} = \frac{2\pi}{\lambda} \nonumber \]

    This wave is independent of time, and is known as a standing wave. But we could define a function whose phase varies with time:

    \[ \psi(t) = e^{-i\omega_{0}t} \nonumber \]

    Here t is time, and \(\omega\) is the angular frequency. We define the period, T, as the time between repetitions of the oscillation

    \[ \omega_{0} = \frac{2\pi}{T} \nonumber \]


    This page titled 1.3: Review of Classical Waves is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marc Baldo (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.