Skip to main content
Engineering LibreTexts

3.10: References

  • Page ID
    41031
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    [1] C. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. on Microwave Theory and Techniques, vol. 17, no. 12, pp. 1087–1090, Dec. 1969.

    [2] R. Simons, N. Dib, and L. Katehi, “Modeling of coplanar stripline discontinuities,” IEEE Trans. on Microwave Theory and Techniques, vol. 44, no. 5, pp. 711–716, May 1996.

    [3] D. Prieto, J. Cayrout, J. Cazaux, T. Parra, and J. Graffeuil, “Cps structure potentialities for mmics: a cps/cpw transition and a bias network,” in 1998 IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1998, pp. 111–114.

    [4] K. Goverdhanam, R. Simons, and L. Katehi, “Micro-coplanar striplines-new transmission media for microwave applications,” in 1998 IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1998, pp. 1035–1038.

    [5] ——, “Coplanar stripline components for high-frequency applications,” IEEE Trans. on Microwave Theory and Techniques, vol. 45, no. 10, pp. 1725–1729, Oct. 1997.

    [6] J. Knorr and K. Kuchler, “Analysis of coupled slots and coplanar strips on dielectric substrate,” IEEE Trans. on Microwave Theory and Techniques, vol. 23, no. 7, pp. 541–548, Jul. 1975.

    [7] S. Pintzos, “Full-wave spectral-domain analysis of coplanar strips,” IEEE Trans. on Microwave Theory and Techniques, vol. 39, no. 2, pp. 239–246, Feb. 1991.

    [8] M. Gunston, Microwave Transmission-line Impedance Data. Van Nostrand Reinhold Company, 1973.

    [9] P. Holder, “X-band microwave integrated circuits using slotline and coplanar waveguide,” The Radio and Electronic Engineer, vol. 48, no. 1/2, pp. 38–43, Jan./Feb. 1978.

    [10] K. Gupta, R. Garg, and I. Bahl, Microstrip Lines and Slotlines, 2nd ed. Artech House, 1996.

    [11] B. Spielman, “Computer-aided analysis of dissipation losses in isolated and coupled transmission lines for microwave and millimetre-wave applications,” NRL Formal Report, no. 8009, 1976.

    [12] A. Ganguly and B. Spielman, “Dispersion characteristics for arbitrarily configured transmission media,” IEEE Trans. on Microwave Theory and Techniques, vol. 25, no. 12, pp. 1138–1141, Dec. 1977.

    [13] R. Barrett, “Microwave printed circuits—a historical survey,” IRE Trans. on Microwave Theory and Techniques, vol. 3, no. 2, pp. 1–9, Mar. 1955.

    [14] E. Hammerstad and O. Jensen, “Accurate models for microstrip computer-aided design,” in 1980 IEEE MTT-S Int. Microwave Symp. Digest, May 1980, pp. 407–409.

    [15] E. Hammerstad and F. Bekkadal, “A microstrip handbook, ELAB Report STF44 A74169,” University of Trondheim, Norway, Tech. Rep., Feb. 1975.

    [16] E. O. Hammerstad, “Equations for microstrip circuit design,” in 5th European Microwave Conf., Sep. 1975, pp. 268–272.

    [17] K. Karkkainen, A. Sihvola, and K. Nikoskinen, “Effective permittivity of mixtures: numerical validation by the fdtd method,” IEEE Trans. on Geoscience and Remote Sensing, vol. 38, no. 3, pp. 1303–1308, May 2000.

    [18] J. Garnett, “Colors in metal glasses and metal films,” Trans. Royal Society, vol. 53, pp. 385– 420, 1904.

    [19] T. Edwards and M. Steer, Foundations for Microstrip Circuit Design. John Wiley & Sons, 2016.

    [20] A. Djordjevic and T. Sarkar, “Closed-form formulas for frequency-dependent resistance and inductance per unit length of microstrip and strip transmission lines,” IEEE Trans. on Microwave Theory and Techniques,, vol. 42, no. 2, pp. 241–248, Feb. 1994.

    [21] H. Wheeler, “Transmission-line properties of parallel wide strips by a conformal-mapping approximation,” IEEE Trans. on Microwave Theory and Techniques, vol. 12, no. 3, pp. 280– 289, May 1964.

    [22] ——, “Transmission-line properties of parallel strips separated by a dielectric sheet,” IEEE Trans. on Microwave Theory and Techniques, vol. 13, no. 2, pp. 172–185, Feb. 1965.

    [23] L. W. Cahill, “Approximate formulae for microstrip transmission lines,” Proc. Institute of Radio and Electrical Engineers, vol. 35, pp. 317– 321, Oct. 1974.

    [24] R. Owens, “Accurate analytical determination of quasi-static microstrip line parameters,” Radio and Electronic Engineer, vol. 46, no. 7, pp. 360–364, Jul. 1976.

    [25] I. Bahl and R. Garg, “A designer’s guide to stripline circuits,” Microwaves, pp. 90–96, 1978.

    [26] S. Cohn, “Problems in strip transmission lines,” IRE Trans. on Microwave Theory and Techniques, vol. 3, no. 2, pp. 119–126, Mar. 1955.

    [27] H. Howe, Stripline Circuit Design. Artech House, 1974.

    [28] W. Hilberg, “From approximations to exact relations for characteristic impedances,” IEEE Trans. on Microwave Theory and Techniques, vol. 17, no. 5, pp. 259–265, May 1969.

    [29] C. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. on Microwave Theory and Techniques, vol. 17, no. 12, pp. 1087–1090, Dec. 1969.

    [30] M. Houdart, “Coplanar lines : Application to broadband microwave integrated circuits,” in 6th European Microwave Conf., Sep. 1976, pp. 49–53.


    This page titled 3.10: References is shared under a not declared license and was authored, remixed, and/or curated by Michael Steer.

    • Was this article helpful?