Skip to main content
Engineering LibreTexts

5.7: Exercises

  • Page ID
    34245
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Unless otherwise specified, use \(\beta\) = 100.

    5.7.1: Analysis Problems

    1. Plot the load line for the circuit of Figure \(\PageIndex{1}\). \(V_{CC}\) = 20 V, \(V_{EE}\) = −8 V, \(R_B\) = 7.5 k\(\Omega\), \(R_E\) = 10 k\(\Omega\), \(R_C\) = 12 k\(\Omega\).

    clipboard_e7772f8144febab510d3cc2767c45d6b5.png

    Figure \(\PageIndex{1}\)

    2. Determine the new Q point for Problem 1 if \(\beta\) = 250.

    3. Plot the load line for the circuit of Figure \(\PageIndex{2}\). \(V_{EE}\) = 5 V, \(V_{CC}\) = −18 V, \(R_B\) = 22 k\(\Omega\), \(R_E\) = 1.2 k\(\Omega\), \(R_C\) = 1.5 k\(\Omega\).

    clipboard_ecfbb1416638e6f4ce5826ac266ddd749.png

    Figure \(\PageIndex{2}\)

    4. Determine the new Q point for Problem 3 if \(\beta\) = 50.

    5. Plot the load line for the circuit of Figure \(\PageIndex{3}\). \(V_{CC}\) = 20 V, \(R_1\) = 15 k\(\Omega\), \(R_2\) = 5 k\(\Omega\), \(R_E\) = 4.3 k\(\Omega\), \(R_C\) = 9.1 k\(\Omega\).

    clipboard_e280dfcb1219dac32b1d25d3d25d437e8.png

    Figure \(\PageIndex{3}\)

    6. Determine the new Q point for Problem 5 if \(\beta\) = 150.

    7. Plot the load line for the circuit of Figure \(\PageIndex{4}\). \(V_{EE}\) = 16 V, \(R_1\) = 12 k\(\Omega\), \(R_2\) = 4.7 k\(\Omega\), \(R_E\) = 6.2 k\(\Omega\), \(R_C\) = 10 k\(\Omega\).

    clipboard_e3cc27f2dd5528c692ebcb892b04a1d5c.png

    Figure \(\PageIndex{4}\)

    8. Determine the new Q point for Problem 7 if \(\beta\) = 200.

    9. Plot the load line for the circuit of Figure \(\PageIndex{5}\). \(V_{CC}\) = 12 V, \(R_B\) = 560 k\(\Omega\), \(R_C\) = 3.3 k\(\Omega\).

    clipboard_e0eb1fd2cfb9efec91abe56580bf5b30e.png

    Figure \(\PageIndex{5}\)

    10. Determine the new Q point for Problem 9 if \(\beta\) = 75.

    11. Plot the load line for the circuit of Figure \(\PageIndex{6}\).

    clipboard_e05468077fa2f3a31c99368fdc379784b.png

    Figure \(\PageIndex{6}\)

    12. Determine the new Q point for Problem 11 if \(\beta\) = 200.

    13. Plot the load line for the circuit of Figure \(\PageIndex{7}\). \(V_{CC}\) = 15 V, \(R_B\) = 470 k\(\Omega\), \(R_E\) = 560 \(\Omega\), \(R_C\) = 3.3 k\(\Omega\).

    clipboard_e9242a6b146ae4636fb462bf997e1fb7e.png

    Figure \(\PageIndex{7}\)

    14. Determine the new Q point for Problem 13 if \(\beta\) = 170.

    15. Plot the load line for the circuit of Figure \(\PageIndex{8}\).

    16. Determine the new Q point for Problem 15 if \(\beta\) = 75.

    17. Plot the load line for the circuit of Figure \(\PageIndex{9}\). \(V_{EE}\) = 18 V, \(R_B\) = 680 k\(\Omega\), \(R_E\) = 270 \(\Omega\), \(R_C\) = 3.9 k\(\Omega\).

    18. Determine the new Q point for Problem 17 if \(\beta\) = 200.

    clipboard_e73642d702055c63234216f19c56a6e3a.png

    Figure \(\PageIndex{8}\)

    clipboard_eab4aff8079571495f39bf0acc53f829a.png

    Figure \(\PageIndex{9}\)

    5.7.2: Design Problems

    19. Determine a value for \(R_E\) in the circuit of Figure \(\PageIndex{1}\) to set \(I_C\) = 2 mA. Use \(V_{CC}\) = 20 V, \(V_{EE}\) = −8 V, \(R_B\) = 10 k\(\Omega\), \(R_C\) = 5.6 k\(\Omega\).

    20. Determine a value for \(R_C\) in the circuit of Figure \(\PageIndex{2}\) to set \(V_{CE}\) = 10 V. Use \(V_{CC}\) = −25 V, \(V_{EE}\) = 6 V, \(R_B\) = 15 k\(\Omega\), \(R_E\) = 6.8 k\(\Omega\).

    21. Determine a value for \(R_C\) in the circuit of Figure \(\PageIndex{3}\) to set \(V_{CE}\) = 8 V. Use \(V_{CC}\) = 24 V, \(R_1\) = 22 k\(\Omega\), \(R_2\) = 10 k\(\Omega\), \(R_E\) = 5.6 k\(\Omega\).

    22. Determine new values for \(R_1\) and \(R_2\) in the circuit of Figure \(\PageIndex{4}\) in order to set \(I_C\) = 500 \(\mu\)A. \(V_{EE}\) = 22 V, \(R_E\) = 15 k\(\Omega\), \(R_C\) = 6.8 k\(\Omega\).

    5.7.3: Challenge Problems

    23. Determine the maximum and minimum values for \(I_C\) in Problem 1 if every resistor has a 10% tolerance.

    24. Determine the maximum and minimum values for \(V_{CE}\) in Problem 3 if every resistor has a 5% tolerance.

    25. Determine a value for \(R_E\) in the circuit of Figure \(\PageIndex{3}\) to set \(V_{CE}\) = 10 V. \(V_{CC}\) = 30 V, \(R_1\) = 12 k\(\Omega\), \(R_2\) = 3 k\(\Omega\), \(R_C\) = 8.2 k\(\Omega\).

    26. Derive Equation 5.16.

    27. Determine the the power drawn from the supply for the circuit of Problem 5. 28. Using a 15 volt power supply, design a bias circuit to create a very stable Q point of 2 mA and 5 volts.

    5.7.4: Computer Simulation Problems

    29. Perform a series of DC simulations to test the Q point stability versus \(\beta\) of the circuit of Problem 1.

    30. Perform a Monte Carlo simulation to investigate the Q point stability of the circuit of Problem 5 if the emitter resistor has a 10% tolerance.


    This page titled 5.7: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?