Skip to main content
Engineering LibreTexts

8.2: Impulse-Momentum Theorem for a Mass Particle Translating in One Direction

  • Page ID
    7671
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    An unrestrained mass particle subjected to force acting only in the \(x\) direction is shown in the drawing at right. The equation of motion is

    clipboard_e67857802d3c36c5a567545f79335c66f.png
    Figure \(\PageIndex{1}\)

    \[m \ddot{x}=f_{x}(t) \Rightarrow m \dot{v}=f_{x}(t) \nonumber \]

    Integrating the equation of motion from time zero to any time \(t>0\) gives

    \[m \int_{\tau=0}^{\tau=t} \frac{d v}{d \tau} d \tau=m v(t)-m v(0)=\int_{\tau=0}^{\tau=t} f_{x}(\tau) d \tau \equiv I_{F}(t)\label{eqn:8.6} \]

    in which \(I_{F}(t)\) is the area under the force time history and is called the impulse of the force, with dimensions of force \(\times\) time. Equation \(\ref{eqn:8.6}), the impulse-momentum theorem for a mass particle, states that the change of momentum equals the impulse. For a pulse, a force of limited duration as in the drawing on the previous page, we are generally interested in the total impulse \(I_{F}\left(t_{d}\right)\), which remains unchanged for \(t>t_{d}\).


    This page titled 8.2: Impulse-Momentum Theorem for a Mass Particle Translating in One Direction is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by William L. Hallauer Jr. (Virginia Tech Libraries' Open Education Initiative) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?