Skip to main content
Engineering LibreTexts

3.1: Static Feedback Controller

  • Page ID
    24399
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Feedback Control System

    The standard block diagram of a single-input single-output (SISO) feedback control system includes a plant, \(G(s)\), a controller, \(K(s)\), and a sensor, \(H(s)\), where \(H\left(s\right)=1\) is often assumed.

    clipboard_ed9be14f4ed319826d976afe33e86f12e.png
    Figure \(\PageIndex{1}\): Feedback control system with plant, \(G(s)\), sensor, \(H(s)\), and controller, \(K(s)\).

    The overall system transfer function from input, \(r(t)\), to output, \(y(t)\), can be obtained by considering the error signal, \(e=r-Hy=r-KGHe\). Thus, \(\left(1+KGH\right)e=r\).

    Let \(L\left(s\right)=KGH(s)\) denote the feedback loop gain; then, \(\left(1+L\right)e=r\).

    The error transfer function from \(r\) to \(e\) is obtained as: \[S(s)=\frac{1}{1+L(s)}=\frac{1}{1+KGH(s)} \nonumber \]

    The closed-loop transfer function from \(r\) to \(y\) is obtained as: \[T(s)=\frac{KG(s)}{1+KGH(s)} \nonumber \]

    We may note that: \(S\left(s\right)+T\left(s\right)=1\).

    Static Loop Controller Design

    A static controller denotes the use of an amplifier with a gain, \(K\), to generate input to the plant, \(G(s)\). The controller action is represented as: \(u=Ke\), where \(e\) represents the error signal and \(u\) is the plant input. 

    clipboard_ec6fc543f4065ef4562f65d660c4d6316.png
    Figure \(\PageIndex{2}\): Feedback control system with static gain controller.

    Assuming \(H(s)=1\), the closed-loop transfer function is given as:

    \[\frac{y\left(s\right)}{r\left(s\right)}=T\left(s\right)=\frac{KG(s)}{1+KG\left(s\right)} \nonumber \]

    Let \(G\left(s\right)=\frac{n\left(s\right)}{d\left(s\right)}\); then, the closed-loop transfer function is obtained as:

    \[\frac{y\left(s\right)}{r\left(s\right)}=\frac{Kn\left(s\right)}{d\left(s\right)+Kn(s)} \nonumber \]

    The closed-loop characteristic polynomial is defined as: \(\mathit{\Delta}\left(s,K\right)=d(s)+Kn\left(s\right)\).

    From a controller design perspective, the gain \(K\) can be selected to achieve desirable root locations for the closed-loop characteristic polynomial. The design can be performed by comparing the coefficients of the characteristic polynomial with a desired characteristic polynomial.

    Example \(\PageIndex{1}\)

    The model for an environmental control system is given as: \(G\left(s\right)=\frac{1}{20s+1}\).

    Assuming a static gain controller, the closed-loop characteristic polynomial is obtained as: \(\mathit{\Delta}\left(s,K\right)=20s+1+K\).

    Suppose a desired characteristic polynomial is selected as: \({\mathit{\Delta}}_{des}\left(s\right)=4(5s+1)\). Then, by comparing the coefficients, we obtain the static controller as: \(K=3\).

    Example \(\PageIndex{2}\)

    Example 3.2:

    The model for a position control system is given as: \(G\left(s\right)=\frac{1}{s\left(0.1s+1\right)}\).

    Assuming a static gain controller, the characteristic polynomial is obtained as: \(\mathit{\Delta}\left(s,K\right)=s(0.1s+1)+K\).

    Suppose a desired characteristic polynomial is selected as: \({\mathit{\Delta}}_{des}\left(s\right)=0.1(s^2+10s+50)\). Then, by comparing the coefficients, we obtain the static controller as: \(K=5\).


    This page titled 3.1: Static Feedback Controller is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Kamran Iqbal.

    • Was this article helpful?