# 5.1.4: Procedure

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

1. Consider the dual supply circuit of Figure 13.3.1 using E1 = 10 volts, E2 = 15 volts, R1 = 4.7 k, R2 = 6.8 k and R3 = 10 k. To find the voltage from node A to ground, nodal analysis may be applied. In this circuit note that there is only one node and therefore only one equation with one unknown is needed. Once this potential is found, all other circuit currents and voltages may be found by applying Ohm’s law and/or KVL and KCL.

2. Write the node equation for the circuit of Figure 13.3.1 and solve for node voltage A. Also, determine the current through R3. Record these values in Table 13.5.1.

3. Construct the circuit of Figure 13.3.1 using the values specified in step one. Measure the voltage from node A to ground along with the current though R3. Record these values in Table 13.5.1. Also determine and record the deviations.

4. Consider the dual supply circuit of Figure 13.3.2 using E1 = 10 volts, E2 = 15 volts, R1 = 4.7 k, R2 = 6.8 k, R3 = 10 k, R4 = 22 k and R5 = 33 k. Applying nodal analysis to this circuit yields two equations with two unknowns, namely node voltages A and B. Again, once these potentials are found, any other circuit current or voltage may be determined by applying Ohm’s law and/or KVL and KCL.

5. Write the node equations for the circuit of Figure 13.3.2 and solve for node voltage A, node voltage B and the potential from A to B. Also, determine the current through R4. Record these values in Table 13.5.2.

6. Construct the circuit of Figure 13.3.2 using the values specified in step four. Measure the voltages from node A to ground, node B to ground and from node A to B, along with the current though R4. Record these values in Table 13.5.2. Also determine and record the deviations.

## 13.4.1: Simulation

7. Build the circuit of Figure 13.3.2 in a simulator. Using the DC Operating Point simulation function, determine the voltages at nodes A and B, and compare these to the theoretical and measured values recorded in Table 13.5.2.

This page titled 5.1.4: Procedure is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by James M. Fiore.