Skip to main content
Engineering LibreTexts

7.6: Summary

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    We have seen how to convert gains and signals into a decibel form for both powers and voltages. This is convenient because what would require multiplication and division under the ordinary scheme only requires simple addition and subtraction in the dB scheme. Along with this, dB measurement is used almost exclusively for Bode gain plots. A Bode plot details a system’s gain magnitude and phase response. For gain, the amplitude is measured in dB, while the frequency is normally presented in log form. For a phase plot, phase is measured in degrees, and again, the frequency axis is logarithmic. The changes in gain and phase at the frequency extremes are caused by lead and lag networks. Lead networks cause the low frequency gain to roll off. The roll off rate is 6 dB per octave per network. The phase will change from +90 degrees to 0 degrees per network. Lag networks cause the high frequency gain to roll off at a rate of -6 dB per octave per network. The phase change per lag network is from 0 degrees to -90 degrees. It was noted that computers may be used to quickly tabulate the response of complex networks such as these. Many computer circuit simulators are based on the original SPICE program. Among the popular commercial simulation programs are PSpice and Multisim. Freeware versions include LTspice and TINA-TI. Packages such as these offer graphical schematic capture tools and large component libraries.

    Differential amplifiers are symmetrical circuits, employing a minimum of two active devices. They may be configured with single or dual inputs, and single or dual outputs. Diff amps are commonly used as the first stage of an operational amplifier. They tend to amplify the difference in the input signals while simultaneously suppressing in-phase, or common-mode, signals. Current mirrors are widely used for biasing purposes and as active loads. Active loads offer the advantage of producing higher gains than ordinary resistive loads.

    This page titled 7.6: Summary is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by James M. Fiore.

    • Was this article helpful?