# 5.4: Computers and Cryptography

- Page ID
- 89106

### Early computer-era cryptography

Cryptanalysis of the new mechanical ciphering devices proved to be both difficult and laborious. In the United Kingdom, cryptanalytic efforts at Bletchley Park during WWII spurred the development of more efficient means for carrying out repetitious tasks, such as military code breaking (decryption). This culminated in the development of the Colossus, the world's first fully electronic, digital, programmable computer, which assisted in the decryption of ciphers generated by the German Army's Lorenz SZ40/42 machine.

Extensive open academic research into cryptography is relatively recent, beginning in the mid-1970s. In the early 1970s IBM personnel designed the Data Encryption Standard (DES) algorithm that became the first federal government cryptography standard in the United States. In 1976 Whitfield Diffie and Martin Hellman published the Diffie–Hellman key exchange algorithm. In 1977 the RSA algorithm was published in Martin Gardner's Scientific American column. Since then, cryptography has become a widely used tool in communications, computer networks, and computer security generally.

Some modern cryptographic techniques can only keep their keys secret if certain mathematical problems are intractable, such as the integer factorization or the discrete logarithm problems, so there are deep connections with abstract mathematics. There are very few cryptosystems that are proven to be unconditionally secure. The one-time pad is one, and was proven to be so by Claude Shannon. There are a few important algorithms that have been proven secure under certain assumptions. For example, the infeasibility of factoring extremely large integers is the basis for believing that RSA is secure, and some other systems, but even so, proof of unbreakability is unavailable since the underlying mathematical problem remains open. In practice, these are widely used, and are believed unbreakable in practice by most competent observers. There are systems similar to RSA, such as one by Michael O. Rabin that are provably secure provided factoring n = pq is impossible; it is quite unusable in practice. The discrete logarithm problem is the basis for believing some other cryptosystems are secure, and again, there are related, less practical systems that are provably secure relative to the solvability or insolvability discrete log problem.

As well as being aware of cryptographic history, cryptographic algorithm and system designers must also sensibly consider probable future developments while working on their designs. For instance, continuous improvements in computer processing power have increased the scope of brute-force attacks, so when specifying key lengths, the required key lengths are similarly advancing. The potential impact of quantum computing are already being considered by some cryptographic system designers developing post-quantum cryptography.[when?] The announced imminence of small implementations of these machines may be making the need for preemptive caution rather more than merely speculative.

Adapted from:

"Cryptography" by Multiple Authors, Wikipedia is licensed under __CC BY-SA 3.0__